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Abstract:     This paper focuses on using the Bees Algorithm for optimising the parameters 
of the swing-up control for a robot gymnast (Robogymnast) attached to a freely rotating 
high bar mounted on ball bearings. Robogymnast, which mimics a human acrobat, consists 
of three links and three joints. Its motion is manipulated by two DC motors mounted at the 
shoulders and hip joints. The freely rotating high bar represents the third joint to which link 
1 (hands and arms as a single rigid part) is firmly attached. Although, this triple pendulum-
like structure is difficult to balance at upright posture, its unpowered joint is advantageous 
during the swing-up phase. The ultimate challenge was to smoothly swing up 
Robogymnast from the downward (stable) position to the upright (unstable) configuration 
by finding  optimum values of the parameters that regulate the amplitudes and frequencies 
of the sinusoidal signals applied to the two DC motors. The Bees Algorithm was used as an 
optimization technique to achieve this. From the randomly obtained set of parameter 
values, three were selected to simulate the behavior of Robogymnast during the swing-up 
phase. The results showed successful swing-up of Robogymnast.  

Keywords: robot gymnast, inverted pendulum, swing-up control, Bees Algorithm.  

1.   INTRODUCTION 

In this paper, the swing-up problem of a nonlinear, three-link robot gymnast (Robogymnat) 
is discussed. With the first hinge being passive and the rest are active, Robogymnast is 
classified as an under-actuated robot (Liu and Yamaura, 2001). Different control strategies 
were used to study the swing-up of such an inverted pendulum-like mechanism. Also the 
problem of stabilising inverted pendulums with passive joints at the upright position was 
extensively investigated (Arai and Tachi, 1991, Furuta et al., 1991, Medrano-Cerda et al., 
1995, Saito et al., 1993, Spong, 1995) . Spong (Spong, 1995) proposed an approach based 
on the partial feedback linearization(Isidori, 1989). This approach was very sensitive to the 
gain values of the outer loop and the switching times. Eltohamy and Kuo (Eltohamy and 
Kuo, 1998) used a numerical optimization algorithm  for the controller design which 
included a globally convergent numerical technique. Their designed controller was 
produced as an optimization problem which accounted for the physical boundaries, 
stability condition of the system and the infinite dimensional nonlinear difference 
constraints. Medrano-Cerda et al., (Medrano-Cerda et al., 1995) designed a robust 
computer control systems for balancing and position control of double and triple inverted 
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pendulums. The controllers were based on linearised models of the pendulums and 
included integral actions and optimal state feedback implemented via functional observers. 
A novel optimization technique called the Bees Algorithm (Pham et al., 2006) provided a 
new approach for controller tuning. Pham et al., (Pham et al., 2009) used it to regulate the 
parameters of a fuzzy logic controller designed to balance an under-actuated two-link 
acrobatic robot (Spong, 1995). They first developed a Linear Quadratic Regulator (LQR) 
to obtain the scaling gains needed to design the fuzzy logic controller. Eldukhri and Pham 
(Eldukhri and Pham, 2010) studied the problem of autonomously swinging up a three-link 
robot with two active (actuated) joints and one passive (unpowered) joint. Their proposed 
approach depended on manipulating the frequency and amplitudes of the sinusoidal 
functions applied to the two motors driving the second and third link.  
 
In this paper, the Bees Algorithm (Pham et al., 2006) is used to tune the parameters of the 
swing up control developed by Eldukhri and Pham (Eldukhri and Pham, 2010). The 
remainder of the paper is organized as follows. Section 2 describes Robogymnast system 
and its mathematical model. In section 3 the swing-up control problem is investigated. 
Section 4 introduces the Bees Algorithm and how it was used for tuning the swing-up 
control parameters. Section 5 discusses the results. Conclusions and further work are given 
in section 6. 

2.   SYSTEM DESCRIPTION AND MODELLING 

Fig.1 depicts the hardware components of Robogymnast (Eldukhri and Pham, 2010). The 
structure of Robogymnast is modelled as a human gymnast swinging on a freely rotating 
high bar with his hands firmly fixed to the bar. Link 1 represents the arms without the 
elbow and wrist joints. The head, neck and torso are combined in link 2 as a rigid single 
body. Link 3 represents the legs without the knee and ankle joints. Joint 1 consists of a 
steel shaft mounted on ball bearings. At one end of the shaft a potentiometer is mounted to 
measure the angle of link 1. Each of joints 2 and 3 consists of two parts. The first part 
comprises a DC motor/gearbox combination with its output shaft coupled to respective 
link. The second part includes the sensor (potentiometer) which measures the relative 
angles between adjacent links. The potentiometer is attached to a short steel shaft mounted 
on both sides on ball bearings. The interfacing circuit between the computer and the robot 
comprises amplifiers and first-order filters. These filters reduce effects introduced by 
sampling the system’s outputs and smooth the control signals sent to the power 
amplifiers/motor drive units (Medrano-Cerda et al., 1995). Robogymnast is controlled by a 
PC equipped with appropriated AD/DA converters. C++ programmes are used to transmit 
the input/output commands between the PC and Robogymnast. 

2.1    MATHMETICAL MODEL OF THE ROBOGYMNAST 

The equations of motion for Robogymnast represented by the schematic diagram 
illustrated in Fig.2 was derived using Lagrange equations (Eldukhri and Pham, 2010, 
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Eltohamy and Kuo, 1998, Furuta et al., 1984, Medrano-Cerda et al., 1995). By using 
Matlab®/toolboxes and additional M-files written by the authors, the linearised 
continuous-time, state-space model of Robogymnast was obtained as (Eldukhri and Pham, 
2010): 

푥̇ = A푥 + B푢                                                                                                                   (1) 

푦 = C푥                                                                                                                             (2)     

where  
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3.   SWINGING-UP CONTROL PROBLEM 
 
The challenge posed by Robogymnast is how to make it swing up from the downward 
position (stable equilibrium posture) to upward attitude (unstable configuration). The 
swing-up must be achieved in a reasonable operation time without the risk of damaging 
any of the structure components. This requires determining of suitable input control signals 
to the motors located at joints 2 and 3 to obtain satisfactorily smooth sequence of 
oscillations. Eldukhri and Pham (Eldukhri and Pham, 2010) proposed a solution to this 
problem by manipulating the frequency and amplitudes of the sinusoidal input control 
signals applied to the two DC motors driving links 1 and 2. This enabled the two motors to 
pump energy into the system and consequently swing Robogymnast until it eventually 
flipped past the upright position. This was in effective achieved by causing the value of the 
first angle (푞 = 휃 ) moves from the initial status (푞 = 0) to the upright position, i.e. 
푞 = 휋 (or 푞 = −휋, depending on the direction of movement). The equations of the input 
control signals (Eldukhri and Pham, 2010) are given as:      

  푢 = 퐴 훼 sin(∅ )																																																																																																			                   (3) 

  푢 = 퐴 훼 sin(∅ )			                                                                                                        (4) 
 
Where 퐴 	and	퐴  are constants and ∅ 	and ∅  are dependent on 훿. During each sinusoidal 
cycle (multiple of sampling intervals 푇  depending on the value of 훿 ), ∅ 	and ∅  were 
varied between 0 and 2휋  with a step increment of 휂 훿⁄  applied during each sampling 
interval. 휂 is constant and proportional to 2휋.  At the end of each duty cycle (∅ , ∅ = 2휋) 
훼, δ were increased by	∆α and ∆δ	respectively. 퐴 ,	퐴 , α,  휂 and 훿 were initially set at 3, 
2.5, 1, 0.3142 and 1 respectively (Eldukhri and Pham, 2010). By means of exploitation of 
MATLAB/toolboxes, the discrete time model was obtained by discretising the linearised 

Fig. 2. Schematic Representation of  Robogymnast 
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continuous-time model at a sampling time of 0.025s. The discrete-time model was used to 
simulate the dynamic behaviour of Robogymnast during the swing up phase. In Eldukhri 
and Pham’s work, the periodic (at every sampling time Ts) increment in δ  (∆δ) was 
obtained manually (through trial and error process). 
 
In this paper, the Bees Algorithm was used as an optimization technique to automatically 
tune the values of the increment in α (∆α) and the increment in δ (∆δ) to obtain acceptably 
smooth swinging of Robogymnast. 

4.   The BEES ALGORITHM 

The Bees Algorithm is a population based search algorithm that simulates the food 
foraging behaviour of honeybees to find the optimal solution (Kennedy et al., 2001). The 
Algorithm emulates  the harvesting process of the natural bees  by doing a local search, till 
an acceptable result is found, or a pre-defined number of iterations has been reached (Otri, 
2011). 
 
The Bees Algorithm starts with scout bees being placed arbitrarily on the search space. The 
main steps of the Algorithm are (Pham et al., 2006):  
1- Initialize population with random solutions. 
2- Evaluate fitness of the population. 
3- While (stopping criterion not met) //Forming new population. 
4- Select sites for neighborhood search. 
5- Recruit bees for selected sites (more bees for best e sites) and evaluate fatnesses. 
7- Select the fittest bee from each patch. 
8- Assign remaining bees to search randomly and evaluate their fitnesses. 
9- End While.  
 
The Bees Algorithm parameters are (Pham et al., 2009): number of scout bees (n), number 
of sites selected out of n visited sites (m), number of best sites out of  m selected sites (e), 
number of bees recruited for best e sites (nep), number of bees recruited for the other (m-e) 
selected sites (nsp), initial size of patches (ngh) which includes site and its neighborhood 
and stopping criterion. The use of the Algorithm to optimize the increment ∆δ	will be 
discussed in the following section. 

4.1    TUNING THE SWING-UP CONTROL PARAMETERS BY USING   THE 
BEES ALGORITHM 

The Bees Algorithm was used to investigate the optimum values of the increments in α 
(∆α)  and δ (∆δ) that will enable smooth swing up of the Robogymnast model described in 
equations 1 and 2 in a reasonable time. This is achieved by manipulating independently the 
amplitudes and the frequencies of the control signals given in equations 3 and 4. The 
parameter values of the Bees Algorithm were set as in table 1.The number of scouts (range 
of ∆α  and ∆δ) was selected to be 20 (equivalent to 20 randomly selected values of ∆α and 
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∆δ) satisfying, respectively, the conditions 0.1 < ∆α < 0.7 and 2 < ∆δ < 7. The other 
parameters were selected based on internally imposed conditions limiting the error 
boundary in the upright angle	휃 . Using these conditions, the Bees Algorithm starts to 
compute the fitness (i.e. the swing-up angle of Robogymnast 휃  reaching approximately -
1800). 

Table 1.    The parameter values of the Bees Algorithm. 
The parameters of the Bees 

Algorithm 
Values Description  

Number of scout bees(n) 20 Number of randomly chosen values of ∆α and ∆δ from the 
solution space (ranges of ∆α and ∆δ). 

Number of recruited bees 
around elite selected 
patches(nep) 

15 Number of bees (foragers) recruited to search new values of ∆α 
and ∆δ which are placed within squares of sides ngh centred on 
the elites of ∆α and ∆δ. 

Number of recruited bees 
around best selected 
patches(nsp) 

10 Number of bees (foragers) recruited to search new values of ∆α 
and ∆δ which are placed within a square of side ngh centred on 
the (m-e) locations of ∆α and ∆δ. 

Patch radius for 
neighbourhood search(ngh) 

0.001 The boundary of neighbourhood search for new values of ∆α 
and ∆δ by recruited bees. 

 
The randomly selected values of ∆α and ∆δ vary each time the Bees Algorithm code is re-
executed. Table 2 shows for each selected ∆α and ∆δ, how long it takes to swing up 
Robogymnast to the upright position (휃  = -1800).  

Table 2.      Starting with n scout bees to find the fitness of the sites. 
∆α         ∆δ Angle of Robogymnast 

Position (	휃  Deg.) 
Duration time(sec) to reach the upright 

position 
0.3632 5.2787     -180.0166   162.1000 
0.5459   3.3925     -180.0405   172.3250 

0.3353  4.7344     -180.1167   173.7000 

0.2662  6.7858     -179.8697   170.1500 
0.5169  4.1088     -179.8671   152.6500 
0.2903  6.5787     -179.8615   165.0500 

0.5072  5.1618     -179.9775   132.2500 
0.6701  5.9610     -180.0446   122.9000 
0.5593  6.2456     -179.8404   128.0500 

0.5236  2.7881     -180.0658   209.1000 

0.1277  4.4269     -179.9333   361.6500 

0.5941  2.7094     -179.9327   203.7500 

0.3289  2.1786     -179.9220   273.8500 

0.1583  6.0014     -179.8813   294.6000 

0.1207  6.7975     -179.8803   433.5000 

0.2027  6.8244     -179.8724   244.3750 

0.5771  6.6700     -179.8548   108.4500 

0.5546  2.4877     -179.8228   233.2750 
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Table 2.      Starting with n scout bees to find the fitness of the sites. (Cont.) 

0.4933  6.7875     -179.8224   110.4000 

0.1191  6.8530     -179.8109   437.1250 
 
The Flowchart in Fig. 3 explains the steps of using the Bees Algorithm to optimise the 
parameters (∆α and ∆δ) for attaining reasonably smooth swing-up control of Robogymnast. 
 
5.   RESULTS DISCUSSION 
 
The results obtained in Table 2 were used to further tune ∆α and ∆δ by the Bees Algorithm 
to achieve an optimum fitness (휃 = -1800) with small margins of error (<0.02) at which the 
Algorithm will stop searching. The fine-tuned results are shown in Table 3. To simulate the 
behaviour of Robogymnast during the swing-up phase, three values of ∆α and ∆δ were 
selected from Table 3. At each sampling interval, the control input signals u1 and u2 
described in equations (3) and (4) were recalculated and applied to the discrete-time model 
of Robogymnast obtained from equations (1) and (2). As shown in Fig. 4, the time taken to 
reach the upright position is relatively short which may cause damage to the motor/gearbox 
structures. At ∆α equal to 0.1191 and ∆δ equal to 6.8530, the system’s operation was very 
smooth. However, it reached the upright position in a very long time (437.1250 seconds) as 
shown in Fig. 5. Compared to Eldukhri’s and Pham’s work (Eldukhri and Pham, 2010), ∆α 
and ∆δ equal to 0.3621 and 5.2779 respectively gave a satisfactory response in a 
reasonable duration (162.1 seconds) as illustrated in Fig. 6. 

Table 3.        Results after tuning by the Bees Algorithm. 
        ∆α         ∆δ Angle of Robogymnast 

Position (	휃  Deg.) 
Duration time(sec) to reach 

the upright position 
0.3621 5.2779 -180.0004 162.1000 
0.5436 3.3931 -180.0003 172.3500 

0.3317 4.7343 -180.0002 173.6750 

0.2687 6.7875 -179.9847 170.1250 
0.5235 4.1070 -179.9994 152.5750 
0.2909 6.5795 -179.9999 165.1250 

0.5088 5.1620 -179.9995 132.2500 
0.6715 5.9633 -180.0004 122.9500 
0.4026 2.6161 -179.9994 244.3500 

0.5236 2.7881 -180.0658 209.1000 

0.1277 4.4269 -179.9333 361.6500 

0.5941 2.7094 -179.9327 203.7500 

0.3289 2.1786 -179.9220 273.8500 
0.1583 6.0014 -179.8813 294.6000 

0.1207 6.7975 -179.8803 433.5000 
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Table 3.        Results after tuning by the Bees Algorithm. (Cont.) 

0.2027 6.8244 -179.8724 244.3750 

0.5771 6.6700 -179.8548 108.4500 

0.5546 2.4877 -179.8228 233.2750 

0.4933 6.7875 -179.8224 110.4000 

0.1191 6.8530 -179.8109 437.1250 

 
Fig. 4. Simulated angular position θ  at ∆α=0.5771 and ∆δ= 6.6700  

 
Fig. 5. Simulated angular position θ  at ∆α=0.1191 and ∆δ= 6.8530  

 
Fig. 6. Simulated angular position θ  at ∆α=0.3621 and ∆δ=5.2779  
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Find the top elite (e) sites which have a higher fitness from the (m) selected 

Recruit nep bees (foragers) to search for the higher fitness (휃 ) from the elite sites placed within a 
square of side ngh centred on the fittest elite from the previous iteration. If a forager lands on a 

position of higher fitness then an exchange will happen, else exploration will continue. 

Recruit nsp bees to search for the higher fitness (휃 ) from the (m-e) sites of the best selected locations 
each placed within a square of side ngh centred on the fittest (m-e) sites from the previous iteration. If a 
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Evaluate the fitness (휃 ) of each bee where it landed at each value of ∆α and ∆δ by 
running the program which is used to simulate the dynamic behaviour of 

Robogymnast during the swing-up phase 

 

 

 

 

 

 

 

Tuning the values of ∆α and ∆δ by the Bees Algorithm 

Fig. 3. Flowchart of the swing-up control parameters optimization using the Bees Algorithm 
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6.   CONCLUSION AND FURTHER WORK 

The paper focused on using a newly developed optimization technique (Bees Algorithm) to 
tune the parameters of a swing-up control of a robogymnast (Robogymnast) developed by 
Eldukhri and Pham (Eldukhri and Pham, 2010). Unlike the previous approach, the Bees 
Algorithm allowed a flexible and random selection of the parameter affecting the 
amplitudes and frequencies of the sinusoidal signals applied to the two DC motors driving 
Robogymnast. The simulations results were satisfactory. Further work includes using the 
Algorithm to study different scenarios for tuning multiple parameters affecting each of the 
amplitudes and frequencies independently. It is also envisaged to implement the findings 
on the real the system. 
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