Skip to main content

Advertisement

Log in

A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2)

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a new extension of SALBP-2, so called assembly line resource assignment and balancing problem of type 2 (ALRABP-2). Two main differences from the existing literature are revealed in this work. The first is on the objective function which is a multiple one. It is aimed here to minimize both the cycle time and the cost per time unit (hour) of a line for a fixed number of stations to satisfy the constraints of precedence between tasks and compatibility between resources. The second difference lies in the proposed method to solve this problem. A new version of multi-objective genetic algorithm (MOGA) called hybrid MOGA (HMOGA) is elaborated. Full experiment design is used to obtain a better MOGA parameters combination. The effectiveness of the HMOGA was assessed through a set of literature problems. The performance of HMOGA shows a good quality of the fronts generated and a better problem-solving capacity for two optimisations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akpına, S., & MiracBayhan, G. (2011). A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints. Engineering Applications of Artificial Intelligence, 24(3), 449–457.

    Article  Google Scholar 

  • Al-Zuheri, A., Luong, L., & Xing, K. (2014). Developing a multi-objective genetic optimisation approach for an operational design of a manual mixed-model assembly line with walking workers. Journal of Intelligent Manufacturing, doi:10.1007/s10845-014-0934-3

  • Anderson, J. M., Sayers, T. M., & Bell, M. G. H. (2007). Optimisation of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm. IEEE RoadTransport Information and Control, 454, 186–190.

    Google Scholar 

  • Bäck, T. (1996). Evolutionary algorithms in theory and practice. Oxford: Oxford University Press.

    Google Scholar 

  • Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem. Management Science, 32(8), 909–932.

    Article  Google Scholar 

  • Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalised assembly line balancing. European Journal of Operational Research, 168(3), 694–715.

    Article  Google Scholar 

  • Burcin, C., Fulya, A., & Berna, D. (2011). Multi-objective optimization of a stochastic assembly line balancing: A hybrid simulated annealing algorithm. Computers and Industrial Engineering, 60(3), 376–384.

  • Bukchin, J., & Tzurm, M. (2000). Design of flexible assembly line to minimize equipment cost. IIE Transactions, 32(7), 585–598.

    Google Scholar 

  • Chen, R., Lu, K., & Yu, S. (2002). A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15(5), 447–457.

    Article  Google Scholar 

  • Coello, C. A. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1, 28–36.

  • Coello, C. A. C., Aguirre, A. H., & Zitzler, E. (2007). Evolutionary multi-objective optimization. European Journal of Operation Research, 181(3), 1617–1619.

    Article  Google Scholar 

  • Deb, K., & Goldberg, D. (1989). An investigation on niche and species formation in genetic function optimization. In Proceedings of third international conference on genetic algorithms, pp. 42–50.

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: A unified formulation. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 28(1), 26–37.

    Article  Google Scholar 

  • Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing problem. Management Science, 11(2), 308–15.

    Article  Google Scholar 

  • Hamta, N., Fatemi Ghomi, S. M. T., Jolai, F., & Bahalke, U. (2011). Bi-criteria assembly line balancing by considering flexible operation times. Applied Mathematical Modelling, 35(12), 5592–5608.

  • Holland, H. J. (1975). Adaptation in natural and artificial systems. Ann Arbor, Michigan: The University of Michigan Press.

    Google Scholar 

  • Hwang, R., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing problem with genetic algorithm. International Journal of Production Research, 46(16), 4637–4649.

    Article  Google Scholar 

  • Kyungchul, P., Sungsoo, P., & Wanhee, K. (1997). A heuristic for an assembly line balancing problem with incompatibility, range, and partial precedence constraints. Computers & Industrial Engineering, 32(2), 321–332.

    Article  Google Scholar 

  • Kim, Y. K., Kim, Y. J., & Kim, Y. H. (1996). Genetic algorithms for assembly line balancing with various objectives. Computers & Industrial Engineering, 30(3), 397–409.

    Article  Google Scholar 

  • Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly line balancing using genetic algorithms with heuristic generated initial populations and multiple criteria. Decision Sciences, 25(4), 581–606.

  • Maashi, M., Özcan, E., & Kendall, G. (2014). A multi-objective hyper-heuristic based on choice function. Expert Systems with Applications, 41(9), 4475–4493.

    Article  Google Scholar 

  • Miranda, G., de Armas, J., Segura, C., & León, C. (2010). Hyperheuristic codification for the multi-objective 2d guillotine strip packing problem. In Proceedings of IEEE congress on evolutionary computation, pp. 1–8.

  • Okabe, T., Jin, Y., & Sendhoff, B. (2003). A critical survey of performance indices for multi-objective optimisation. InEvolutionary computation, CEC ’03. The 2003 congress on 2003, Vol. 2, pp. 878–885.

  • Ozbakir, L., Baykasoglu, A., Gorkemli, B., & Gorkemli, L. (2011). Multiple-colony ant algorithm for parallel assembly line balancing problem. Applied Soft Computing, 11(3), 3186–3198.

    Article  Google Scholar 

  • Rekiek, B., De lit, P., Pellichero, F., L’Eglise, T., Fouda, P., Falkenauer, E., et al. (2001). A multiple objective grouping genetic algorithm for assembly line design. Journal of Intelligent Manufacturing, 12(5–6), 467–485.

    Article  Google Scholar 

  • Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly line balancing. International Journal of Production Economics, 41(1–3), 343–354.

  • Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using genetic algorithms. Journal of Intelligent Manufacturing, 11(3), 295–310.

    Article  Google Scholar 

  • Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Computers & Industrial Engineering, 47(4), 391–407.

    Article  Google Scholar 

  • Scholl, A. (1999). Balancing and sequencing assembly lines (2nd ed.). Heidelberg: Physica.

    Book  Google Scholar 

  • Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666–93.

    Article  Google Scholar 

  • Triki, H., Mellouli A., & Masmoudi, F. (2013). Assembly line resource assignment and balancing problem of type 2. In Proceedings of the fifth international conference on design and modeling of mechanical systems, CMSM’2013, Djerba, Tunisia, March 25–27, pp. 627–634.

  • Wang, H. S., Che, Z. H., & Chiang, C. J. (2012). A hybrid genetic algorithm for multi-objective product plan selection problem with ASP and ALB. Expert Systems with Applications, 39(5), 5440–5450.

  • Yoosefelahi, A., Aminnayeri, M., Mosadegh, H., & Davari Ardakani, H. (2011). Type II robotic assembly line balancing problem: An evolution strategies algorithm for a multi-objective model. Journal Manufacturing Systems, 31(2), 139–151.

    Article  Google Scholar 

  • Zacharia, P. T., & Nearchou, A. C. (2012). Multi-objective fuzzy assembly line balancing using genetic algorithms. Journal of Intelligent Manufacturing, 23(3), 615–627.

    Article  Google Scholar 

  • Zhang, Q., & Li, H. (2007). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. IEEE Transactions on Evolutionary Computation, 11, 712–731.

    Article  Google Scholar 

  • Zhang, W., & Gen, M. (2009). An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. Journal of Intelligent Manufacturing, 22(3), 367–378.

  • Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

  • Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., & Corne, D. (2001). Evolutionary multi-criterion optimization. In Proceedings first international conference, EMO 2001, Zurich, Switzerland, March 7–9, 2001. Springer 2001 Lecture Notes in Computer Science ISBN 3-540-41745-1.

Download references

Acknowledgments

The authors are thankful to Kamel MAALOUL, English professor at the Faculty of Sciences of Sfax, for having proofread the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hager Triki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triki, H., Mellouli, A. & Masmoudi, F. A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2). J Intell Manuf 28, 371–385 (2017). https://doi.org/10.1007/s10845-014-0984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0984-6

Keywords

Navigation