Skip to main content
Log in

A production-inventory model with imperfect production process and partial backlogging under learning considerations in fuzzy random environments

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we investigates the learning effect of the unit production time on optimal lot size for the imperfect production process with partial backlogging of shortage quantity in fuzzy random environments. It is assumed that the setup cost, the average holding cost, the backorder cost, the raw material cost and the labour cost are characterized as fuzzy variables and the elapsed time until the machine shifts from “in-control” state to “out-of-control” state is characterized as a fuzzy random variable. As a function of these parameters, the average total cost is also a random fuzzy variable. Based on the credibility measure of fuzzy event, the fuzzy random total cost function is transformed into an equivalent crisp function. We propose an algorithm to determine the optimal solution. Furthermore, the model is illustrated with the help of numerical example. Finally, sensitivity analysis of the optimal solution with respect to major parameters is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chakraborty, T., Giri, B. C., & Chaudhuri, K. S. (2008). Production lot sizing with process deterioration and machine breakdown. European Journal of Operational Research, 185(2), 606–618.

    Article  Google Scholar 

  • Chen, C. K., Lo, C. C., & Liao, Y. X. (2008). Optimal lot size with learning consideration on an imperfect production system with allowable shortages. International Journal of Production Economics, 113(1), 459–469.

    Article  Google Scholar 

  • Chung, K. J., & Hou, K. L. (2003). An optimal production run time with imperfect production processes and allowable shortages. Computers & Operations Research, 30(4), 483–490.

    Article  Google Scholar 

  • Giri, B. C., & Dohi, T. (2007). Inspection scheduling for imperfect production processes under free repair warranty contract. European Journal of Operational Research, 183(1), 238–252.

    Article  Google Scholar 

  • Hu, J. S., Zheng, H., Guo, C. Y. & Ji, Y. P. (2010). Optimal production run length with imperfect production processes and backorder in fuzzy random environment, Computers & Industrial Engineering, 59, 1, 9–15.

  • Hyun Kim, C., & Hong, Y. (1999). An optimal production run length in deteriorating production processes. International Journal of Production Economics, 58(2), 183–189.

    Article  Google Scholar 

  • Jaber, M. Y., & Salameh, M. K. (1995). Optimal lot sizing under learning considerations: Shortages allowed and backordered. Applied Mathematical Modelling, 19(5), 307–310.

    Article  Google Scholar 

  • Jaber, M. Y., & Bonney, M. (1996). Optimal lot sizing under learning considerations: The bounded learning case. Applied Mathematical Modelling, 20(10), 750–755.

    Article  Google Scholar 

  • Jaber, M. Y., & Bonney, M. (1997). The effect of learning and forgetting on the economic manufactured quantity (EMQ) with the consideration of intracycle backorders. International Journal of Production Economics, 53(1), 1–11.

    Article  Google Scholar 

  • Jaber, M. Y., & Guiffrida, A. L. (2004). Learning curves for processes generating defects requiring reworks. European Journal of Operational Research, 159(3), 663–672.

    Article  Google Scholar 

  • Jaber, M. Y., & Guiffrida, A. L. (2008). Learning curves for imperfect production processes with reworks and process restoration interruptions. European Journal of Operational Research, 189(1), 93–104.

    Article  Google Scholar 

  • Lan, Y., Zhao, R., & Tang, W. (2011). Minimum risk criterion for uncertain production planning problems. Computers and Industrial Engineering, 61(3), 591–599.

  • Liao, G. L., Chen, Y. H., & Sheu, S. H. (2009). Optimal economic production quantity policy for imperfect process with imperfect repair and maintenance. European Journal of Operational Research, 195(2), 348–357.

    Article  Google Scholar 

  • Liao, G. L. (2012). Optimal economic production quantity policy for randomly failing process with minimal repair, backorder and preventive maintenance. International Journal of Systems Science. doi:10.1080/00207721.2012.659702

  • Liu, B., & Liu, Y. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450.

    Article  Google Scholar 

  • Liu, B. (2002). Theory and practice of uncertain programming. Heidelberg: Physica.

    Book  Google Scholar 

  • Liu, B. (2003). Uncertainty theory: Toward axiomatic foundations. Lecture Note, Tsinghua University.

  • Liu, Y., & Liu, B. (2003a). Fuzzy random variables: A scalar expected value operator. Fuzzy Optimization and Decision Making, 2(2), 143–160.

    Article  Google Scholar 

  • Liu, Y., & Liu, B. (2003b). Expected value operator of random fuzzy variable and random fuzzy expected value models. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 11(2), 195–215.

    Article  Google Scholar 

  • Liu, Y. (2013). Uncertain random variables: A mixture of uncertainty and randomness. Soft Computing, 17(4), 625–634.

    Article  Google Scholar 

  • Maity, K., & Maiti, M. (2007). Possibility and necessity constraints and their defuzzification—A multi-item production-inventory scenario via optimal control theory. European Journal of Operational Research, 177(2), 882–896.

    Article  Google Scholar 

  • Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1(2), 97–110.

    Article  Google Scholar 

  • Rosenblatt, M. J., & Lee, H. L. (1986). Economic production cycles with imperfect production processes. IIE Transactions, 18(1), 48–55.

    Article  Google Scholar 

  • Salameh, M. K., Abdul-Malak, M. A. U., & Jaber, M. Y. (1993). Mathematical modelling of the effect of human learning in the finite production inventory model. Applied Mathematical Modelling, 17(11), 613–615.

    Article  Google Scholar 

  • Sana, S. S. (2010). An economic production lot size model in an imperfect production system. European Journal of Operational Research, 201(1), 158–170.

    Article  Google Scholar 

  • Wang, X., & Tang, W. (2009). Optimal production run length in deteriorating production processes with fuzzy elapsed time. Computers & Industrial Engineering, 56(4), 1627–1632.

    Article  Google Scholar 

  • Yang, K., & Liu, Y. (2014). Developing equilibrium optimization methods for hub location problems. Soft Computing. doi:10.1007/s00500-014-1427-1.

  • Zhang, C., Zhao, R., & Tang, W. (2009). Optimal run lengths in deteriorating production processes in random fuzzy environments. Computers & Industrial Engineering, 57(3), 941–948.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments and suggestions that improved the quality of the paper to a great extent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gour Chandra Mahata.

Appendices

Appendix 1

Proof of inference 1

For the outer integral, integral interval \((-\infty , \infty )\) with respect to \(x\) can be divided into the following five intervals \((-\infty , t(q_i)-\Delta -\Delta _2]\), \([t(q_i)-\Delta -\Delta _2, t(q_i)-\Delta ]\), \([t(q_i)-\Delta , t(q_i)]\), \([t(q_i), t(q_i)+\Delta _1]\) and \([t(q_i)+\Delta _1, \infty )\). Then we have

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad =\tau \hat{p}(q_i) \Big [\int _{-\infty }^{t(q_i)- \Delta -\Delta _2} \int _0^{t(q_i)} \Phi (y;x)dy f(x)dx \nonumber \\&\quad \quad +\, \int _{t(q_i) -\Delta -\Delta _2}^{t(q_i) -\Delta } \int _0^{t(q_i)}\Phi (y;x)dy f(x)dx\nonumber \\&\quad \quad +\, \int _{t(q_i)-\Delta }^{t(q_i)} \int _0^{t(q_i)}\Phi (y;x)dy f(x)dx\nonumber \\&\quad \quad +\, \int _{t(q_i)}^{t(q_i)+\Delta _1}\int _0^{t(q_i)} \Phi (y;x)dy f(x)dx \nonumber \\&\quad \quad +\, \int _{t(q_i)+\Delta _1}^{\infty } \int _0^{t(q_i)}\Phi (y;x)dy f(x)dx\Big ]. \end{aligned}$$
(28)

For the first item in the square bracket, since \(x\in (-\infty , t(q_i)-\Delta -\Delta _2]\) which implies \(x+\Delta +\Delta _2\le t(q_i)\), then the inner integral interval \([0,t(q_i)]\) with respect to \(y\) can be divided into the following five intervals \([0, x-\Delta _1]\), \([x-\Delta _1, x]\), \([x, x+\Delta ]\), \([x+\Delta , x+\Delta +\Delta _2]\) and \([x+\Delta +\Delta _2, t(q_i)]\) (see Fig. 3). The rest items in the square bracket can be similarly discussed. Hence we have

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad =\tau \hat{p}(q_i) \int _{-\infty }^{t(q_i)-\Delta -\Delta _2}\Big [\int _0^{x-\Delta _1} \Phi (y;x)dy \nonumber \\&\quad \quad +\, \int _{x-\Delta _1}^x \Phi (y;x)dy+ \int _x^{x+\Delta } \Phi (y;x)dy \nonumber \\&\quad \quad +\, \int _{x+\Delta }^{x+\Delta +\Delta _2}\Phi (y;x)dy \!+\! \int _{x+\Delta +\Delta _2}^{t(q_i)} \Phi (y;x)dy \Big ]f(x)dx \nonumber \\&\quad \quad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i)-\Delta } \Big [\int _0^{x-\Delta _1} \Phi (y;x)dy \nonumber \\&\quad \quad +\, \int _{x-\Delta _1}^x \Phi (y;x)dy + \int _x^{x+\Delta } \Phi (y;x)dy \nonumber \\&\quad \quad +\, \int _{x+\Delta }^{t(q_i)} \Phi (y;x)dy\Big ]f(x)dx \nonumber \\&\quad \quad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta }^{t(q_i)} \Big [\int _0^{x-\Delta _1} \Phi (y;x)dy \nonumber \\&\quad \quad +\, \int _{x-\Delta _1}^x \Phi (y;x)dy + \int _x^{t(q_i)}\Phi (y;x)dy \Big ]f(x)dx\nonumber \\&\quad \quad +\,\tau \hat{p}(q_i) \int _{t(q_i)}^{t(q_i)+\Delta _1} \Big [\int _0^{x-\Delta _1} \Phi (y;x)dy\nonumber \\&\quad \quad +\, \int _{x-\Delta _1}^{t(q_i)} \Phi (y;x)dy\Big ]f(x)dx\nonumber \\&\quad \quad +\, \tau \hat{p}(q_i) \int _{t(q_i)+\Delta _1}^\infty \int _0^{t(q_i)} \Phi (y;x)dy f(x)dx. \end{aligned}$$
(29)

From the credibility distribution \(\Phi (y;x)\) of \(\xi (x)\), we can obtain

$$\begin{aligned}&E[N(t(q_i))]= \tau \hat{p}(q_i)\int _{-\infty }^{t(q_i)-\Delta -\Delta _2} \Big [\int _0^{x-\Delta _1} 0 dy\\&\quad +\, \int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy + \int _x^{x+\Delta } \frac{1}{2}dy \\&\quad +\, \int _{x+\Delta }^{x+\Delta +\Delta _2}\Big [1\!-\!\frac{R(y;x)}{2} \Big ]dy \!+\! \int _{x+\Delta +\Delta _2}^{t(q_i)} 1dy \Big ]f(x)dx \\&\quad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i)-\Delta } \Big [\int _0^{x-\Delta _1} 0dy \\&\quad +\, \int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy + \int _x^{x+\Delta } \frac{1}{2}dy\\&\quad +\, \int _{x+\Delta }^{t(q_i)} \Big [1-\frac{R(y;x)}{2}\Big ]dy\Big ]f(x)dx \\&\quad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta }^{t(q_i)} \Big [\int _0^{x-\Delta _1} 0dy + \int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy\\&\quad +\, \int _x^{t(q_i)}\frac{1}{2}dy \Big ]f(x)dx \! +\!\tau \hat{p}(q_i)\! \int _{t(q_i)}^{t(q_i)+\Delta _1} \Big [\int _0^{x-\Delta _1} 0 dy\\&\quad +\, \int _{x-\Delta _1}^{t(q_i)} \frac{L(y;x)}{2}dy\Big ]f(x)dx \\&\quad +\, \tau \hat{p}(q_i) \int _{t(q_i)+\Delta _1}^\infty \int _0^{t(q_i)} 0 dy f(x)dx. \end{aligned}$$
$$\begin{aligned}&= \tau \hat{p}(q_i) \int _{-\infty }^{t(q_i)-\Delta -\Delta _2} \Big [\int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy\\&\quad +\,\frac{\Delta }{2}dy + \int _{x+\Delta }^{x+\Delta +\Delta _2}\Big [1-\frac{R(y;x)}{2} \Big ]dy\\&\quad +\, (t(q_i)-x-\Delta -\Delta _2) \Big ]f(x)dx \\&\quad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i)-\Delta } \Big [\int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy + \frac{\Delta }{2}dy\\&\quad +\, \int _{x+\Delta }^{t(q_i)} \Big [1-\frac{R(y;x)}{2}\Big ]dy\Big ]f(x)dx\\&\quad +\, \tau \hat{p}(q_i) \int _{x-\Delta _1}^x \frac{L(y;x)}{2}dy + \frac{1}{2}(t(q_i)-x) \Big ]f(x)dx \\&\quad +\,\tau \hat{p}(q_i) \int _{t(q_i)}^{t(q_i)+\Delta _1} \Big [\int _{x-\Delta _1}^{t(q_i)} \frac{L(y;x)}{2}dy\Big ]f(x)dx \end{aligned}$$
$$\begin{aligned}&\quad = \frac{\tau \hat{p}(q_i)}{2} \int _{-\infty }^{t(q_i)-\Delta -\Delta _2} \Big [\int _{x-\Delta _1}^x L(y;x)dy\nonumber \\&\quad \quad -\, \int _{x+\Delta }^{x+\Delta +\Delta _2} R(y;x)dy (2t(q_i)-2x-\Delta ) \Big ]f(x)dx\nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i)-\Delta }\Big [\int _{x-\Delta _1}^x L(y;x)dy \nonumber \\&\quad \quad -\, \int _{x+\Delta }^{t(q_i)}R(y;x)dy + (2t(q_i)-2x-\Delta )\Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)- \Delta }^{t(q_i)}\! \Big [\int _{x-\Delta _1}^x\! L(y;x)dy +\,(t(q_i)\!-\!x)\Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)}^{t(q_i)+\Delta _1} \int _{x-\Delta _1}^{t(q_i)} L(y;x)dy f(x)dx. \end{aligned}$$
(30)

The proof is completed.

Appendix 2

Proof of inference 2 Since \(L(y;x)=\frac{y-(x-\Delta _1)}{\Delta _1}\) for \(y\in [x-\Delta _1, x)\) and \(R(y;x)=\frac{(x+\Delta +\Delta )-y}{\Delta _2}\) for \(y\in [x+\Delta , x+\Delta +\Delta _2)\), then by substituting them into \(E[N(t(q_i))]\) in Inference 1, we can get

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad =\frac{\tau \hat{p}(q_i) }{2}\int _{-\infty }^{t(q_i) -\Delta -\Delta _2}\Big [ \int _{t(q_i) -\Delta _1}^{t(q_i)} \frac{y-(x-\Delta _1)}{\Delta _1}dy \nonumber \\&\quad \quad -\, \int _{x+\Delta }^{x+\Delta +\Delta _2} \frac{(x+\Delta +\Delta _2)-y}{\Delta _2}dy \nonumber \\&\quad \quad +\,(2t(q_i)-2x-\Delta )\Big ]f(x)dx\nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i) -\Delta }\Big [ \int _{x-\Delta _1}^x \frac{y-(x-\Delta _1)}{\Delta _1}dy \nonumber \\&\quad \quad -\, \int _{x+\Delta }^{t(q_i)} \frac{(x+\Delta +\Delta _2) -y}{\Delta _2}dy \nonumber \\&\quad \quad +\,(2t(q_i)-2x-\Delta )\Big ]f(x)dx\nonumber \\&\quad \quad + \,\frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i) -\Delta }^{t(q_i)}\Big [ \int _{x-\Delta _1}^x \frac{y-(x-\Delta _1)}{\Delta _1}dy\nonumber \\&\quad \quad +\,(t(q_i)-x)\Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)}^{t(q_i) +\Delta _1} \int _{x-\Delta _1}^{t(q_i)} \frac{y-(x-\Delta _1)}{\Delta _1}dy f(x)dx.\nonumber \\ \end{aligned}$$
(31)

By solving the inner integral, we have

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad =\frac{\tau \hat{p}(q_i)}{2} \int _{-\infty }^{t(q_i) -\Delta -\Delta _2} \Big [\frac{y^2}{2\Delta _1}\Big |_{x-\Delta _1}^x\nonumber \\&\quad \quad -\,\frac{(x- \Delta _1)y}{\Delta _1} \Big |_{x-\Delta _1}^x -\frac{(x+\Delta + \Delta _2)y}{\Delta _2} \Big |_{x+\Delta }^{x+ \Delta + \Delta _2} \nonumber \\&\quad \quad +\,\frac{y^2}{2\Delta _2}\Big |_{x+\Delta }^{x+ \Delta + \Delta _2} + (2t(q_i)-2x-\Delta )\Big ]f(x)dx\nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i) -\Delta -\Delta _2}^{t(q_i) -\Delta } \Big [\frac{y^2}{2\Delta _1} \Big |_{x-\Delta _1}^x \nonumber \\&\quad \quad -\,\frac{(x-\Delta _1)y}{\Delta _1}\Big |_{x-\Delta _1}^x -\frac{(x+\Delta +\Delta _2)y}{\Delta _2}\Big |_{x+\Delta }^{t(q_i)}\nonumber \\&\quad \quad +\,\frac{y^2}{2\Delta _2}\Big |_{x+\Delta }^{t(q_i)}+ (2t(q_i) -2x- \Delta ) \Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i)- \Delta }^{t(q_i)} \Big [\frac{y^2}{2\Delta _1} \Big |_{x-\Delta _1}^x\nonumber \\&\quad \quad -\,\frac{(x-\Delta _1)y}{\Delta _1} \Big |_{x-\Delta _1}^x + (t(q_i) -x)\Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i)}^{t(q_i)+\Delta _1}\Big [\frac{y^2}{2\Delta _1} \Big |_{x-\Delta _1}^{t(q_i)} \nonumber \\&\quad \quad -\,\frac{(x-\Delta _1)y}{\Delta _1} \Big |_{x-\Delta _1}^{t(q_i)} \Big ]f(x)dx\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad = \frac{\tau \hat{p}(q_i)}{2} \int _{-\infty }^{t(q_i)-\Delta -\Delta _2} \Big [\frac{x^2-(x- \Delta _1)^2}{2\Delta _1}\nonumber \\&\quad \quad -\,\frac{(x-\Delta _1) \Delta _1}{\Delta _1}- \frac{(x+ \Delta + \Delta _2) \Delta _2}{\Delta _2} \nonumber \\&\quad \quad +\,\frac{(x+\Delta + \Delta _2)^2 -(x+\Delta )^2}{2\Delta _2}\nonumber \\&\quad \quad +\, (2t(q_i) -2x-\Delta )\Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)-\Delta -\Delta _2}^{t(q_i)-\Delta } \Big [\frac{x^2-(x-\Delta _1)^2}{2\Delta _1}\nonumber \\&\quad \quad -\,\frac{(x-\Delta _1) \Delta _1}{\Delta _1}-\frac{(x+\Delta +\Delta _2)(t(q_i)-x- \Delta )}{\Delta _2} \nonumber \\&\quad \quad +\,\frac{t(q_i)^2 -(x+\Delta )^2}{2\Delta _2} + (2t(q_i) -2x- \Delta )\Big ] f(x)dx\nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i)-\Delta }^{t(q_i)} \Big [\frac{x^2-(x-\Delta _1)^2}{2 \Delta _1} \nonumber \\&\quad \quad -\,\frac{(x-\Delta _1) \Delta _1}{\Delta _1} +(t(q_i)-x) \Big ]f(x)dx \nonumber \\&\quad \quad +\, \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)}^{t(q_i) +\Delta _1} \Big [\frac{t(q_i)^2 -(x-\Delta _1)^2}{2 \Delta _1}\nonumber \\&\quad \quad -\,\frac{(x-\Delta _1)(t(q_i)-x+ \Delta _1)}{\Delta _1}\Big ]f(x)dx. \end{aligned}$$
(32)

Combining the similar terms, we get

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad = \frac{\tau \hat{p}(q_i)}{2} \int _{-\infty }^{t(q_i)-\Delta -\Delta _2} \Bigg [ \frac{2x-\Delta _1}{2}\nonumber \\&\qquad -\,(x-\Delta _1)-(x+\Delta +\Delta _2)\nonumber \\&\qquad +\, \frac{2x+2\Delta +\Delta _2}{2} +(2t(q_i)-2x-\Delta )\Bigg ]f(x)dx \nonumber \\&\qquad +\,\frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i) -\Delta -\Delta _2}^{t(q_i) -\Delta }\Bigg [ \frac{2x-\Delta _1}{2}-(x-\Delta _1)\nonumber \\&\qquad -\,\frac{(x+\Delta +\Delta _2) (t(q_i) -x-\Delta )}{\Delta _2}\nonumber \\&\qquad +\, \frac{(t(q_i) +x+\Delta )(t(q_i) -x-\Delta )}{2\Delta _2} \nonumber \\&\qquad +\,(2t(q_i) -2x-\Delta )\Bigg ]f(x)dx\nonumber \\&\qquad +\,\frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i) -\Delta }^{t(q_i)} \Bigg [\frac{(2x\!-\! \Delta _1)}{2} \!-\!(x\!-\!\Delta _1) \nonumber \\&\qquad +\,(t(q_i) \!-\!x)\Bigg ]f(x)dx \!+\! \frac{\tau \hat{p}(q_i)}{2} \int _{t(q_i)}^{t(q_i) +\Delta _1}\nonumber \\&\qquad \, \Bigg [\frac{(t(q_i) -x+\Delta _1)(t(q_i) +x-\Delta _1)}{2\Delta _1}\nonumber \\&\qquad -\,\frac{(x\!-\!\Delta _1)(t(q_i) \!-\!x\!+\! \Delta _1)}{\Delta _1} \Bigg ]f(x)dx. \end{aligned}$$
(33)

By further simplification, we can derive

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad =\frac{\tau P}{2}\int _{-\infty }^{t(q_i) -\Delta -\Delta _2} \Big (\frac{\Delta _1}{2} -\frac{\Delta _2}{2}\nonumber \\&\qquad +\,2t(q_i)-2x-\Delta \Big )f(x)dx \nonumber \\&\qquad +\,\frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i) -\Delta -\Delta _2}^{t(q_i) -\Delta }\Big [\frac{\Delta _1}{2}\nonumber \\&\qquad +\,\frac{(t(q_i) -x-\Delta )^2}{2\Delta _2} +t(q_i) -x \Big ]f(x)dx\nonumber \\&\qquad +\,\frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i) -\Delta }^{t(q_i)} \Big [\frac{\Delta _1}{2}+(t(q_i) -x)\Big ]f(x)dx \nonumber \\&\qquad +\, \frac{\tau \hat{p}(q_i)}{2}\int _{t(q_i)}^{t(q_i) +\Delta _1}\nonumber \\&\qquad \,\times \frac{(t(q_i)-x +\Delta _1)(t(q_i) -x+\Delta _1)}{2\Delta _1}f(x)dx.\nonumber \\&\quad =\tau \hat{p}(q_i)\int _{-\infty }^{t(q_i)\!-\!\Delta \!-\!\Delta _2}\Big (\frac{\Delta _1\!-\!2\Delta \!-\!\Delta _2}{4} \!+\!t(q_i) \!-\!x\Big )f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i)\int _{t(q_i) -\Delta -\Delta _2}^{t-\Delta }\Big [ \frac{\Delta _1}{4} +\frac{(t(q_i) -x-\Delta )^2}{4\Delta _2}\nonumber \\&\qquad +\,\frac{t(q_i) -x}{2} \Big ]f(x)dx\nonumber \\&\qquad +\, \tau \hat{p}(q_i) \int _{t(q_i)-\Delta }^{t(q_i)} \Big [\frac{\Delta _1}{4} +\frac{(t(q_i)-x)}{2}\Big ]f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i) \int _{t(q_i)}^{t(q_i) +\Delta _1}\frac{(t(q_i)-x+\Delta _1)^2}{4 \Delta _1}f(x)dx. \end{aligned}$$
(34)

The proof is completed.

Appendix 3

Proof of inference 3

Substituting \(\Delta =0\) into \(E[N(t(q_i))]\) in Inference 2, we can get

$$\begin{aligned}&E[N(t(q_i))]\nonumber \\&\quad = \tau \hat{p}(q_i)\int _{-\infty }^{t(q_i)-\Delta _2}\Big (\frac{\Delta _1-\Delta _2}{4} +t(q_i)-x\Big )f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i)\int _{t(q_i)-\Delta _2}^{t(q_i)}\Big [ \frac{\Delta _1}{4}+\frac{(t(q_i)-x)^2}{4\Delta _2} \nonumber \\&\qquad +\,\frac{t(q_i)-x}{2} \Big ]f(x)dx + \tau \hat{p}(q_i)\int _{t(q_i)}^{t(q_i)} \Big [\frac{\Delta _1}{4}\nonumber \\&\qquad +\,\frac{(t(q_i)-x)}{2}\Big ]f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i)\int _{t(q_i)}^{t(q_i)+\Delta _1}\frac{(t(q_i)-x+\Delta _1)^2}{4 \Delta _1}f(x)dx.\nonumber \\&\quad =\tau \hat{p}(q_i)\int _{-\infty }^{t(q_i)-\Delta _2}(t(q_i)-x)f(x)dx\nonumber \\&\qquad +\, \tau \hat{p}(q_i)\int _{-\infty }^{t(q_i)-\Delta _2}\frac{\Delta _1-\Delta _2}{4} f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i)\int _{t(q_i)-\Delta _2}^{t(q_i)} \frac{\Delta _1}{4}f(x)dx\nonumber \\&\qquad +\,\tau \hat{p}(q_i) \int _{t(q_i)\!-\!\Delta _2}^{t(q_i)} \frac{(t(q_i)\!-\!x)(t(q_i)\!-\!x\!+\!2\Delta _2)}{4\Delta _2} f(x)dx \nonumber \\&\qquad +\, \tau \hat{p}(q_i)\times 0\nonumber \\&\qquad +\, \tau \hat{p}(q_i) \int _{t(q_i)}^{t(q_i)+\Delta _1}\frac{(t(q_i)-x+\Delta _1)^2}{4 \Delta _1}f(x)dx \nonumber \\&\quad =\tau \hat{p}(q_i)\Big [\int _{-\infty }^{t(q_i)- \Delta _2}(t(q_i)-x)f(x)dx\nonumber \\&\qquad +\, \frac{\Delta _1-\Delta _2}{4} \int _{-\infty }^{t(q_i)-\Delta _2} f(x)dx \nonumber \\&\qquad +\, \frac{\Delta _1}{4} \int _{t(q_i)-\Delta _2}^{t(q_i)}f(x)dx\nonumber \\&\quad + \frac{1}{4\Delta _2} \int _{t(q_i)-\Delta _2}^{t(q_i)} (t(q_i)-x)(t(q_i)-x+2\Delta _2)f(x)dx \nonumber \\&\qquad +\,\frac{1}{4 \Delta _1} \int _{t(q_i)}^{t(q_i)+ \Delta _1}(t(q_i)-x+\Delta _1)^2f(x)dx. \end{aligned}$$
(35)

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, G.C. A production-inventory model with imperfect production process and partial backlogging under learning considerations in fuzzy random environments. J Intell Manuf 28, 883–897 (2017). https://doi.org/10.1007/s10845-014-1024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-1024-2

Keywords

Navigation