Skip to main content
Log in

An impending deadlock-free scheduling method in the case of unified automated material handling systems in 300 mm wafer fabrications

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Impending deadlock is difficult to detect on the track of the unified automated material handling systems in 300 mm wafer fabrications, and has been less examined. This paper proposes an impending deadlock detection model using a graphic formulation with new concepts of critical chains and shared nodes. A novel controlling method is presented to ensure critical chains have at least one empty node and sequence the OHTs’ entry of the shared nodes. This method is easy to apply and features real-time operation and large-scale systems. The effectiveness and efficiency of the proposed method is confirmed by simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chao, D. Y., & Pan, Y. (2015). Uniform formulas for compound siphons, complementary siphons and characteristic vectors in deadlock prevention of flexible manufacturing systems. Journal of Intelligent Manufacturing, 26(1), 13–23.

    Article  Google Scholar 

  • Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405–419.

    Article  Google Scholar 

  • Fanti, M. P. (2002). Event-based controller to avoid deadlock and collisions in zone control AGVS. International Journal of Production Research, 40(6), 1453–1478.

    Article  Google Scholar 

  • Fanti, M. P., Maione, B., Mascolo, S., & Turchiano, A. (1997). Event-based feedback control for deadlock avoidance in flexible production systems. IEEE Transactions on Robotics and Automation, 13(3), 347–363.

    Article  Google Scholar 

  • Fanti, M. P., Maione, G., & Turchiano, B. (2001). Distributed event-control for deadlock avoidance in automated manufacturing systems. International Journal of Production Research, 39(9), 1993–2021.

    Article  Google Scholar 

  • Farajzadeh, N., Hashemzadeh, M., Mousakhani, M., & Haghighat, A.T. (2005). An efficient generalized deadlock detection and resolution algorithm in distributed systems. In: The fifth international conference on computer and information technology (pp. 303–307). Shanghai, China.

  • Ferrarini, L., Piroddi, L., & Allegri, S. (1999). Comparative performance analysis of deadlock avoidance control algorithm. Journal of Intelligent Manufacturing, 10(6), 569–585.

    Article  Google Scholar 

  • Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849–866.

    Article  Google Scholar 

  • Heinicke, M. (2014). Implementation of resilient production systems by production control. Procedia CIRP, 19(C), 105–110.

    Article  Google Scholar 

  • Herrero-Perez, D., & Martinez-Barbera, H. (2010). Modeling distributed transportation systems composed of flexible automated guided vehicles in flexible manufacturing systems. IEEE Transactions on Industrial Informatics, 6(2), 166–180.

    Article  Google Scholar 

  • Im, K. Y., Kim, K., Moon, Y., Park, T., & Lee, S. J. (2010). The deadlock detection and resolution method for a unified transport system. International Journal of Production Research, 48(15), 4423–4435.

    Article  Google Scholar 

  • Joe, Y. Y., Gan, O. P., & Lewis, F. L. (2014). Multi-commodity flow dynamic resource assignment and matrix-based job dispatching for multi-relay transfer in complex material handling systems (MHS). Journal of Intelligent Manufacturing, 25(4), 681–697.

    Article  Google Scholar 

  • Li, S. Y., An, A. M., Wang, Y., Wang, G., Hou, C. Q., & Cao, Y. (2013). Design of liveness-enforcing supervisors with simpler structures for deadlock-free operations in flexible manufacturing systems using necessary siphons. Journal of Intelligent Manufacturing, 24(6), 1157–1173.

    Article  Google Scholar 

  • Martinez-Barbera, H., & Herrero-Perez, D. (2010). Autonomous navigation of an automated guided vehicle in industrial environments. Robotics and Computer-Integrated Manufacturing, 26(4), 296–311.

    Article  Google Scholar 

  • Mati, Y., Rezg, N., & Xie, X. L. (2001). A taboo search approach for deadlock-free scheduling of automated manufacturing systems. Journal of Intelligent Manufacturing, 12(5–6), 535–552.

    Article  Google Scholar 

  • Nishi, T., & Maeno, R. (2010). Petri Net decomposition approach to optimization of route planning problems for AGV systems. IEEE Transactions on Automation Science and Engineering, 7(3), 523–537.

    Article  Google Scholar 

  • Pla, A., Gay, P., Meléndez, J., & López, B. (2014). Petri net-based process monitoring: A workflow management system for process modelling and monitoring. Journal of Intelligent Manufacturing, 25(3), 539–554.

    Article  Google Scholar 

  • Reveliotis, S. A. (2000). Conflict resolution in AGV systems. IIE Transactions, 32(7), 647–659.

    Google Scholar 

  • Reveliotis, S. A., Lawley, M. A., & Ferreira, P. M. (1997). Polynomial complexity deadlock avoidance policies for sequential resource allocation systems. IEEE Transactions on Automatic Control, 42(10), 1344–1157.

    Article  Google Scholar 

  • Roszkowska, E. (2004). Supervisory control for deadlock avoidance in compound processes. IEEE Transactions on Systems, Man, & Cybernetics, Part A, 34(1), 52–64.

    Article  Google Scholar 

  • Singh, N., Sarngadharan, P. V., & Pal, P. K. (2011). AGV scheduling for automated material distribution: A case study. Journal of Intelligent Manufacturing, 22(2), 219–228.

    Article  Google Scholar 

  • Tsinarakis, G. J., Valavanis, K. P., & Tsourveloudis, N. C. (2003). Modular Petri net based modeling, analysis and synthesis of dedicated production systems. IEEE International Conference on Robotics and Automation, 3, 3559–3564.

    Google Scholar 

  • Viswanadham, N., Narahari, Y., & Johnson, T. L. (1990). Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions on Robotics and Automation, 6(6), 713–723.

  • Wang, S., Wu, W., & Yang, J. (2013). Deadlock prevention policy for a class of petri nets based on complementary places and elementary siphons. Journal of Intelligent Manufacturing, 26(2), 321–330.

    Article  Google Scholar 

  • Wu, N. Q., & Zhou, M. C. (2001). Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems based on a Petri net model. IEEE Transactions on Robotics and Automation, 17(5), 658–669.

    Article  Google Scholar 

  • Wu, N. Q., & Zhou, M. C. (2004). Modeling and deadlock control of automated guided vehicle systems. IEEE/ASME Transactions on Mechatronics, 9(1), 50–57.

    Article  Google Scholar 

  • Wu, N.Q., Zhou, M.C., & Hu, G. (2013). One-step look-ahead maximally permissive deadlock control of AMS by using Petri net. ACM Transactions on Embedded Computing Systems, 12(1), Article 10.

  • Wu, N. Q., Zhou, M. C., & Li, Z. W. (2008). Resource-oriented Petri net for deadlock avoidance in flexible assembly systems. IEEE Transactions on System, Man, & Cybernetics, Part A, 38(1), 56–69.

    Article  Google Scholar 

  • Yoo, J. W., Sim, E. S., Cao, C. X., & Park, J. W. (2005). An algorithm for deadlock avoidance in an AGV system. International Journal of Advanced Manufacturing Technology, 26(5–6), 659–668.

    Article  Google Scholar 

  • Zhang, W. J., Li, Q., Bi, Z. M., & Zha, X. F. (2000). A generic Petri net model for flexible manufacturing systems and its use for FMS control software testing. International Journal of Production Research, 38(5), 1109–1131.

    Article  Google Scholar 

  • Zhang, W. J., & Van, L. C. A. (2011). Toward a resilient manufacturing system. CIRP Annals-Manufacturing Technology, 60(1), 469–472.

    Article  Google Scholar 

  • Zhang, W.L. (2008). An event based supervisor for avoiding deadlock in semiconductor manufacturing systems. Control and Decision Conference, (pp. 5292–5297). Yantai, Shangdong, China.

  • Zhang, W. L., & Judd, R. P. (2008). Deadlock avoidance algorithm for flexible manufacturing systems by calculating effective free space of circuit. International Journal of Production Research, 46(13), 3441–3457.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grant No. 61273035 and No. 71471135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Hai Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Zhou, BH. An impending deadlock-free scheduling method in the case of unified automated material handling systems in 300 mm wafer fabrications. J Intell Manuf 29, 155–164 (2018). https://doi.org/10.1007/s10845-015-1098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1098-5

Keywords

Navigation