Skip to main content
Log in

Machine prognostics based on sparse representation model

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The prognostic technologies for machines refer to the estimation of machines’ remaining useful life using monitoring data from sensors. Different from traditional maintenance strategies, this maintenance strategy can reduce downtime, maintenance costs and critical risks. Given these advantages, an increasing number of prognostic models are introduced. Data driven methods such as neural networks and Bayesian approaches are used widely in machine prognostics. However, the sequential information and inherent relationships among historical data are rarely considered in these models. So, the estimations are usually not accurate enough. In our paper, we take a novel methodology to estimate the remaining useful life: first, we adopt sparse representation model to extract the inherent relationships of training samples and measure the similarities between testing samples and training samples, and then a weight is given to every training sample to note its similarity to the testing sample. When all testing samples are measured, a hierarchical Hough voting process utilizing the sequential information of monitoring data is carried out to evaluate the remaining useful life. The industry experiment has proven the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322. doi:10.1109/TSP.2006.881199.

    Article  Google Scholar 

  • Batko, W. (1984). Prediction method in technical diagnostics (4th ed.). Sc. Dr. Thesis Cracov Mining Academy.

  • Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.

    Article  Google Scholar 

  • Candès, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  Google Scholar 

  • Chryssolouris, G., & Toenshoff, H. (1982). Effects of machine-tool-workpiece stiffness on the wear behaviour of superhard cutting materials. CIRP Annals-Manufacturing Technology, 31(1), 65–69.

    Article  Google Scholar 

  • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  Google Scholar 

  • Engan, K., Aase, S. O., & Hakon Husoy, J. (1999). Method of optimal directions for frame design. In Proceedings. 1999 IEEE international conference on acoustics, speech, and signal processing, 1999 (Vol. 5, pp. 2443–2446). IEEE.

  • Gartner, D. L., & Dibbert, S. E. (2001). Application of integrated diagnostic process to non-avionics systems. In AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology Conference (pp. 229–238). IEEE.

  • He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23(2), 221–226.

    Article  Google Scholar 

  • Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. In International Conference on Prognostics and Health Management, 2008. PHM 2008 (pp. 1–6). IEEE.

  • Illingworth, J., & Kittler, J. (1988). A survey of the Hough transform. Computer Vision, Graphics, and Image Processing, 44(1), 87–116.

    Article  Google Scholar 

  • Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.

    Article  Google Scholar 

  • Ld, A. (2001). The problem with aviation COTS. IEEE Aerospace and Electronic Systems Magazine, 16(2), 33–37.

    Article  Google Scholar 

  • Li, R., Sopon, P., & He, D. (2012). Fault features extraction for bearing prognostics. Journal of Intelligent Manufacturing, 23(2), 313–321.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2014). Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 1–12, doi:10.1007/s10845-014-0933-4.

  • Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., Zerhouni, N., et al. (2012). Pronostia: An experimental platform for bearings accelerated life test. In IEEE International Conference on Prognostics and Health Management. Denver, CO, USA.

  • Pecht, M. (2008). Prognostics and health management of electronics. New York: Wiley Online Library.

    Book  Google Scholar 

  • Pecht, M., & Jaai, R. (2010). A prognostics and health management roadmap for information and electronics-rich systems. Microelectronics Reliability, 50(3), 317–323.

    Article  Google Scholar 

  • Rao, B. (1996). Handbook of condition monitoring. Amsterdam: Elsevier.

    Google Scholar 

  • Ren, L., & Lv, W. (2014). Fault detection via sparse representation for semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 27(2), 252–259.

  • Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a bayesian framework. IEEE Transactions on Instrumentation and Measurement, 58(2), 291–296.

    Article  Google Scholar 

  • Saranga, H., & Knezevic, J. (2001). Reliability prediction for condition-based maintained systems. Reliability Engineering & System Safety, 71(2), 219–224.

    Article  Google Scholar 

  • Schwabacher, M. (2005). A survey of data-driven prognostics. In Proceedings of the AIAA Infotech@ Aerospace Conference (pp. 1–5).

  • Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation—A review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14.

    Article  Google Scholar 

  • Sikorska, J., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–1836.

    Article  Google Scholar 

  • Stringer, D. B., Sheth, P. N., & Allaire, P. E. (2012). Physics-based modeling strategies for diagnostic and prognostic application in aerospace systems. Journal of Intelligent Manufacturing, 23(2), 155–162.

    Article  Google Scholar 

  • Sutrisno, E., Oh, H., Vasan, A. S. S., & Pecht, M. (2012). Estimation of remaining useful life of ball bearings using data driven methodologies. In 2012 IEEE Conference on Prognostics and Health Management (PHM) (pp. 1–7). IEEE.

  • Vidal, R., Ma, Y., & Sastry, S. (2003). Generalized principal component analysis (GPCA). In Proceedings. 2003 IEEE computer society conference on computer vision and pattern recognition, 2003 (Vol. 1, pp. I–621). IEEE.

  • Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In International Conference on Prognostics and Health Management, 2008. PHM 2008 (pp. 1–6). IEEE.

  • Wang, X., Rabiei, M., Hurtado, J., Modarres, M., & Hoffman, P. (2009). A probabilistic-based airframe integrity management model. Reliability Engineering & System Safety, 94(5), 932–941.

    Article  Google Scholar 

  • Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227.

  • Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.

    Article  Google Scholar 

  • Yao, A., Gall, J., & Van Gool, L. (2010). A hough transform-based voting framework for action recognition. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2061–2068). IEEE.

  • Zio, E., & Di Maio, F. (2010). A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Reliability Engineering & System Safety, 95(1), 49–57.

    Article  Google Scholar 

  • Zio, E., & Peloni, G. (2011). Particle filtering prognostic estimation of the remaining useful life of nonlinear components. Reliability Engineering & System Safety, 96(3), 403–409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likun Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Lv, W. & Jiang, S. Machine prognostics based on sparse representation model. J Intell Manuf 29, 277–285 (2018). https://doi.org/10.1007/s10845-015-1107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1107-8

Keywords

Navigation