Skip to main content

Advertisement

Log in

Impact of spare parts remanufacturing on the operation and maintenance performance of offshore wind turbines: a multi-agent approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Offshore wind farms are a growing source of energy, which aims to ensure a clean energy with a low environmental impact. In this context, this paper investigates opportunities of the turbine gearbox end of life-cycle to improve the operation and maintenance strategies. We determine the impact of spare part policy based on the remanufacturing of gearboxes recovered after each replacement. The remanufacturing implementation allows the extension of the gearbox life-cycle and involves a perfect organization and coordination between maintenance, monitoring, operation and spare part supply chain to determine the best way to use each gearbox of each wind turbine. In this paper, we present a multi-agent based approach to analyze the impact of the spare parts remanufacturing strategy on the performance of an offshore wind farm in term of total cost and carbon footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archimede, B., Letouzey, A., Memon, M. A., & Xu, J. (2014). Towards a distributed multi-agent framework for shared resources scheduling. Journal of Intelligent Manufacturing, 25(5), 1077–1087.

    Article  Google Scholar 

  • Balaji, P. G., & Srinivasan, D. (2010). An introduction to multi-agent systems. In D. Srinivasan & L. C. Jain (Eds.), Innovations in multi-agent systems and applications-1 (Vol. 310, pp. 1–27). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14435-6_1.

  • Barbati, M., Bruno, G., & Genovese, A. (2012). Applications of agent-based models for optimization problems: A literature review. Expert Systems with Applications, 39(5), 6020–6028.

    Article  Google Scholar 

  • Becker, R., Carlin, A., Lesser, V., & Zilberstein, S. (2009). Analyzing myopic approaches for multi-agent communication. Computational Intelligence, 25(1), 31–50.

    Article  Google Scholar 

  • Boudhar, H., Dahane, M., & Rezg, N. (2014). New dynamic heuristic for the optimization of opportunities to use new and remanufactured spare part in stochastic degradation context. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0989-1.

  • Bouzidi-Hassini, S., & Benbouzid-Sitayeb, F. (2013). Multi-agent based joint production and maintenance scheduling considering human resources. In 2013 5th international conference on modeling, simulation and applied optimization (ICMSAO) (pp. 1–5). IEEE.

  • Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. London: Wiley.

    Book  Google Scholar 

  • Byon, E., & Ding, Y. (2010). Season-dependent condition-based maintenance for a wind turbine using a partially observed markov decision process. IEEE Transactions on Power Systems, 25(4), 1823–1834.

    Article  Google Scholar 

  • Byon, E., Pérez, E., Ding, Y., & Ntaimo, L. (2011). Simulation of wind farm operations and maintenance using discrete event system specification. Simulation, 87(12), 1093–1117.

    Article  Google Scholar 

  • Caridi, M., & Cavalieri, S. (2004). Multi-agent systems in production planning and control: An overview. Production Planning & Control, 15(2), 106–118.

    Article  Google Scholar 

  • Chakrabarti, T. (2014). Emergence of green technologies towards sustainable growth. In M. H. Fulekar, B. Pathak, & R. K. Kale (Eds.), Environment and sustainable development (pp. 1–21). India: Springer. doi:10.1007/978-81-322-1166-2_1.

  • Cheng, C. Y., & Prabhu, V. (2012). Evaluation models for service oriented process in spare parts management. Journal of Intelligent Manufacturing, 23(4), 1403–1417.

    Article  Google Scholar 

  • Cherrington, R., Goodship, V., Meredith, J., Wood, B. M., Coles, S. R., Vuillaume, A., et al. (2012). Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy, 47, 13–21.

    Article  Google Scholar 

  • Davidsson, S., Höök, M., & Wall, G. (2012). A review of life cycle assessments on wind energy systems. The International Journal of Life Cycle Assessment, 17(6), 729–742.

    Article  Google Scholar 

  • Denisov, M., Kamaev, V., & Kizim, A. (2013). Organization of the repair and maintenance in road sector with ontologies and multi-agent systems. Procedia Technology, 9, 819–825.

    Article  Google Scholar 

  • European Wind Energy Association E. (2009). The economics of wind energy. http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf

  • European Wind Energy Association E. (2015). Wind in power: 2014 European statistics. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-Annual-Statistics-2014.pdf

  • Feng, Q., Li, S., & Sun, B. (2014). A multi-agent based intelligent configuration method for aircraft fleet maintenance personnel. Chinese Journal of Aeronautics, 27(2), 280–290.

    Article  Google Scholar 

  • Feng, Y., Qiu, Y., Crabtree, C. J., Long, H., & Tavner, P. J. (2013). Monitoring wind turbine gearboxes. Wind Energy, 16(5), 728–740.

    Article  Google Scholar 

  • Gargiulo, F., Pascar, D., & Venticinque, S. (2013). A multi-agent and dynamic programming algorithm for aeronautical maintenance planning. In 2013 Eighth international conference on P2P, parallel, grid, cloud and internet computing (3PGCIC) (pp. 410–415). IEEE.

  • Gasch, R., & Twele, J. (2011). Wind power plants: Fundamentals, design, construction and operation. Berlin: Springer.

    Google Scholar 

  • Giannakis, M., & Louis, M. (2011). A multi-agent based framework for supply chain risk management. Journal of Purchasing and Supply Management, 17(1), 23–31.

    Article  Google Scholar 

  • González-Marcos, A., Ordieres-Meré, J., Muñoz-Munilla, V., & Alba-Elías, F. (2013). An intelligent supervision system for open loop controlled processes. Journal of Intelligent Manufacturing, 24(1), 15–24.

    Article  Google Scholar 

  • Graja, Z., Migeon, F., Maurel, C., Gleizes, M. P., Laibinis, L., Regayeg, A., & Kacem, A. H. (2014). A pattern based modelling for self-organizing multi-agent systems with event-b. In International conference on agents and artificial intelligence-ICAART 2014 (pp. 229–236).

  • Hahn, B., Durstewitz, M., & Rohrig, K. (2007). Reliability of wind turbines. In J. Peinke, P. Schaumann, & S. Barth (Eds.), Wind energy (pp. 329–332). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-33866-6_62.

  • Hameed, Z., Hong, Y., Cho, Y., Ahn, S., & Song, C. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 13(1), 1–39.

    Article  Google Scholar 

  • Henderson, A. R., Morgan, C., Smith, H. C., Barthelmie, R. J., & Boesmans, B. (2003). Offshore wind energy in Europe: A review of the state-of-the-art. Wind Energy, 6(1), 35–52.

    Article  Google Scholar 

  • Hsieh, F.-S., & Lin, J.-B. (2013). A self-adaptation scheme for workflow management in multi-agent systems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0818-y.

  • Igba, J., Alemzadeh, K., Durugbo, C., & Henningsen, K. (2014a). Through-life engineering services: A wind turbine perspective. Procedia CIRP, 22, 213–218.

    Article  Google Scholar 

  • Igba, J., Alemzadeh, K., Henningsen, K., & Durugbo, C. (2014b). Effect of preventive maintenance intervals on reliability and maintenance costs of wind turbine gearboxes. Wind Energy. doi:10.1002/we.1801.

  • Ilgin, M. A., & Gupta, S. M. (2012). Remanufacturing modeling and analysis. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Kacprzyk, J. (2002). Advances in intelligent and soft computing. Berlin: Springer.

    Google Scholar 

  • Kaltschmitt, M., Streicher, W., & Wiese, A. (2007). Renewable energy: Technology, economics and environment. Berlin: Springer.

    Book  Google Scholar 

  • Kämpf, M., & Köchel, P. (2006). Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items. International Journal of Production Economics, 104(1), 191–200.

    Article  Google Scholar 

  • Kaplanoğlu, V. (2014). Multi-agent based approach for single machine scheduling with sequence-dependent setup times and machine maintenance. Applied Soft Computing, 23, 165–179.

    Article  Google Scholar 

  • Karki, R., & Patel, J. (2009). Reliability assessment of a wind power delivery system. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(1), 51–58.

    Article  Google Scholar 

  • Lee, J. H., & Kim, C. O. (2008). Multi-agent systems applications in manufacturing systems and supply chain management: A review paper. International Journal of Production Research, 46(1), 233–265.

    Article  Google Scholar 

  • Leitão, P., Barbosa, J., & Trentesaux, D. (2012). Bio-inspired multi-agent systems for reconfigurable manufacturing systems. Engineering Applications of Artificial Intelligence, 25(5), 934–944.

    Article  Google Scholar 

  • Lou, P., Chen, Y. P., Ai, W., et al. (2004). Study on multi-agent-based agile supply chain management. International Journal of Advanced Manufacturing Technology, 23(3–4), 197–203.

    Article  Google Scholar 

  • Márquez, F. P. G., Tobias, A. M., Pérez, J. M. P., & Papaelias, M. (2012). Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169–178.

    Article  Google Scholar 

  • Marseguerra, M., Zio, E., & Podofillini, L. (2002). Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliability Engineering & System Safety, 77(2), 151–165.

    Article  Google Scholar 

  • Martínez, E., Sanz, F., Pellegrini, S., Jiménez, E., & Blanco, J. (2009). Life-cycle assessment of a 2-mw rated power wind turbine: CML method. The International Journal of Life Cycle Assessment, 14(1), 52–63.

    Article  Google Scholar 

  • Martinez, E., Sanz, F., Pellegrini, S., Jiménez, E., & Blanco, J. (2009). Life cycle assessment of a multi-megawatt wind turbine. Renewable Energy, 34(3), 667–673.

    Article  Google Scholar 

  • Mennenga, M., Thiede, S., Beier, J., Dettmer, T., Kara, S., & Herrmann, C. (2012). A forecasting model for the evaluation of future resource availability. In D. A. Dornfeld & B. S. Linke (Eds.), Leveraging technology for a sustainable world (pp. 449–454). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-29069-5_76.

  • Miranda, M., Salazar, M., Portela, F., Santos, M., Abelha, A., Neves, J., et al. (2012). Multi-agent systems for hl7 interoperability services. Procedia Technology, 5, 725–733.

    Article  Google Scholar 

  • Naeem, M. A., Dias, D. J., Tibrewal, R., Chang, P. C., & Tiwari, M. K. (2013). Production planning optimization for manufacturing and remanufacturing system in stochastic environment. Journal of Intelligent Manufacturing, 24(4), 717–728.

    Article  Google Scholar 

  • Nejad, A. R., Gao, Z., & Moan, T. (2014). Fatigue reliability-based inspection and maintenance planning of gearbox components in wind turbine drivetrains. Energy Procedia, 53, 248–257.

    Article  Google Scholar 

  • Nicholls-Lee, R. F., Turnock, S. R., & Boyd, S. W. (2008). Simulation based optimisation of marine current turbine blades. In Betram, V., & Rigo, P. (Eds.), 7th international conference on computer and IT applications in the maritime industries (COMPIT?08), Liège, 21–23 April 2008, Architecture Navale, Génie Maritime, Navigation Intérieure et Maritime, Analyse des Systèmes de Transport (pp. 314–328). http://eprints.soton.ac.uk/51108/

  • Nielsen, J. J., & Sørensen, J. D. (2011). On risk-based operation and maintenance of offshore wind turbine components. Reliability Engineering & System Safety, 96(1), 218–229.

    Article  Google Scholar 

  • Nilsson, J., & Bertling, L. (2007). Maintenance management of wind power systems using condition monitoring systems mdash; life cycle cost analysis for two case studies. IEEE Transactions on Energy Conversion, 22(1), 223–229. doi:10.1109/TEC.2006.889623.

    Article  Google Scholar 

  • Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1039-3.

  • Ortegon, K., Nies, L. F., & Sutherland, J. W. (2012). Remanufacturing: an alternative for end of use of wind turbines. In D. A. Dornfeld & B. S. Linke (Eds.), Leveraging technology for a sustainable world (pp. 155–160). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-29069-5_27.

  • Ortegon, K., Nies, L. F., & Sutherland, J. W. (2013). Preparing for end of service life of wind turbines. Journal of Cleaner Production, 39, 191–199.

    Article  Google Scholar 

  • Ortegon, K., Nies, L. F., & Sutherland, J. W. (2014). The impact of maintenance and technology change on remanufacturing as a recovery alternative for used wind turbines. Procedia CIRP, 15, 182–188.

    Article  Google Scholar 

  • Pérez, J. M. P., Márquez, F. P. G., Tobias, A., & Papaelias, M. (2013). Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews, 23, 463–472.

    Article  Google Scholar 

  • Perveen, R., Kishor, N., & Mohanty, S. R. (2014). Off-shore wind farm development: Present status and challenges. Renewable and Sustainable Energy Reviews, 29, 780–792.

    Article  Google Scholar 

  • Pigosso, D. C., Zanette, E. T., Ometto, A. R., Rozenfeld, H., et al. (2010). Ecodesign methods focused on remanufacturing. Journal of Cleaner Production, 18(1), 21–31.

    Article  Google Scholar 

  • Rademakers, L., Braam, H., Zaaijer, M. B., & Bussel, G. V. (2003). Assessment and optimisation of operation and maintenance of offshore wind turbines. In European wind energy conference 2003, Madrid, Spain, 16–19 June.

  • Sahnoun, M., Godsiff, P., Baudry, D., Louis, A., & Mazari, B. (2014). Modelling of maintenance strategy of offshore wind farms based multi-agent system. In CIE44 & ISSM14 (44th international conference on computers & industrial engineering & 9th international symposiom on intelligent manufacturing and service systems) (Vol. 591, pp. 2406–2420).

  • Schulz, T. (2011). A new silver-meal based heuristic for the single-item dynamic lot sizing problem with returns and remanufacturing. International Journal of Production Research, 49(9), 2519–2533.

  • Sinha, Y., & Steel, J. (2015). A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis. Renewable and Sustainable Energy Reviews, 42, 735–742.

    Article  Google Scholar 

  • Sperstad, I. B., Halvorsen-Weare, E. E., Hofmann, M., Nonås, L. M., Stålhane, M., & Wu, M. (2014). A comparison of single-and multi-parameter wave criteria for accessing wind turbines in strategic maintenance and logistics models for offshore wind farms. Energy Procedia, 53, 221–230.

    Article  Google Scholar 

  • Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80. doi:10.1111/j.1468-2370.2007.00202.x.

    Article  Google Scholar 

  • Tian, Z., Ding, Y., & Ding, F. (2011). Maintenance optimization of wind turbine systems based on intelligent prediction tools. In N. Nedjah, L. dos Santos Coelho, V. C. Mariani, & L. de Macedo Mourelle (Eds.), Innovative computing methods and their applications to engineering problems (pp. 53–71). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-20958-1_4.

  • Tisue, S., & Wilensky, U. (2004). Netlogo: A simple environment for modeling complexity. In International Conference on Complex Systems (pp. 16–21).

  • Tracht, K., Westerholt, J., & Schuh, P. (2013). Spare parts planning for offshore wind turbines subject to restrictive maintenance conditions. Procedia CIRP, 7, 563–568.

    Article  Google Scholar 

  • Trappey, A. J., Trappey, C. V., & Ni, W. C. (2013). A multi-agent collaborative maintenance platform applying game theory negotiation strategies. Journal of Intelligent Manufacturing, 24(3), 613–623.

    Article  Google Scholar 

  • van der Laan, E. A., & Teunter, R. H. (2006). Simple heuristics for push and pull remanufacturing policies. European Journal of Operational Research, 175(2), 1084–1102.

    Article  Google Scholar 

  • Wang, J., Hou, S., Su, Y., Du, J., & Wang, W. (2008). Markov decision process based multi-agent system applied to aeroengine maintenance policy optimization. In Fifth international conference on fuzzy systems and knowledge discovery, 2008. FSKD’08 (Vol. 3, pp. 401–408). IEEE.

  • Wang, X., Wang, H., & Qi, C. (2014). Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0864-5.

  • World Wind Energy Association W. (2014). Wwea technical paper series (tp-01-14). http://www.wwindea.org/wwea-publishes-world-wind-resource-assessment-report/

  • Yıldız, A. R. (2009a). A new design optimization framework based on immune algorithm and Taguchi’s method. Computers in Industry, 60(8), 613–620.

    Article  Google Scholar 

  • Yıldız, A. R. (2009b). A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing, 25(2), 261–270.

    Article  Google Scholar 

  • Yıldız, A. R. (2009c). A novel particle swarm optimization approach for product design and manufacturing. The International Journal of Advanced Manufacturing Technology, 40(5–6), 617–628.

    Google Scholar 

  • Yildiz, A. R. (2013). Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Information Sciences, 220, 399–407.

    Article  Google Scholar 

  • Yu, R., Iung, B., & Panetto, H. (2003). A multi-agents based e-maintenance system with case-based reasoning decision support. Engineering Applications of Artificial Intelligence, 16(4), 321–333.

    Article  Google Scholar 

  • Zhou, R., Fox, B., Lee, H., & Nee, A. (2004). Bus maintenance scheduling using multi-agent systems. Engineering Applications of Artificial Intelligence, 17(6), 623–630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Dahane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahane, M., Sahnoun, M., Bettayeb, B. et al. Impact of spare parts remanufacturing on the operation and maintenance performance of offshore wind turbines: a multi-agent approach. J Intell Manuf 28, 1531–1549 (2017). https://doi.org/10.1007/s10845-015-1154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1154-1

Keywords

Navigation