
Northumbria Research Link

Citation: Tan, Choo Jun, Neoh, Siew Chin, Lim, Chee Peng, Hanoun, Samer, Wong, Wai
Peng,  Loo,  Chu  Kong,  Zhang,  Li  and  Nahavandi,  Saeid  (2019)  Application  of  an
evolutionary  algorithm-based  ensemble  model  to  job-shop  scheduling.  Journal  of
Intelligent Manufacturing, 30 (2). pp. 879-890. ISSN 0956-5515 

Published by: Springer

URL:  https://doi.org/10.1007/s10845-016-1291-1  <https://doi.org/10.1007/s10845-016-
1291-1>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/29333/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Application of an Evolutionary Algorithm-based Ensemble Model to Job-Shop Scheduling 

Choo Jun TAN, Siew Chin NEOH, Chee Peng LIM, Samer HANOUN, Wai Peng WONG, Chu 

Kong LOO, Li ZHANG, Saeid NAHAVANDI 

Abstract In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in 

manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the 

building block to formulate an ensemble model to undertake multi-objective optimisation problems in 

job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto 

optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real 

requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in 

undertaking job-shop scheduling problems.  

Keywords Multi-objective optimisation, evolutionary algorithm, ensemble models, job-shop scheduling  

1 Introduction  
 

Computational intelligence models have been widely studied to tackle a variety of industrial optimization 

and related problems.  Examples include the use of an artificial neural network-based method for shape 

optimization in structural design [71, 72], a hybrid differential evolutionary-based algorithm for welded 

beam design [73], and a particle swarm optimization algorithm for structural damage detection pertaining 

to the finite element model of a Timoshenko beam [79].  More recent evolutionary methods, which 

include nature-inspired algorithms using gravitational search [77, 78] and charged system search [78], 

have also been investigated for structural design and optimization of vehicle components.  Different meta-

heuristics models for vehicle crashworthiness as well as noise, vibration, and harness optimization have 

been studied and compared [74]. Other methods, which include the topology optimization approach, have 

been adopted for design and optimization tasks in vehicular technology [75, 76]. Motivated by the success 

of computational intelligence models, particularly evolutionary-based algorithms, in solving industrial 

optimization problems, we focus on the use of single and ensemble evolutionary algorithms for real-world 

industrial job-shop scheduling tasks from the multi-objective optimization perspective in this research. 

Job-shop scheduling is a Non-deterministic Polynomial-time hard (NP-hard) problem in computational 

complexity theory [8], [44], [23]. Job-shop scheduling comprises a finite set of jobs that needs to be 

processed either on single or multiple machines [27], [24], subject to a number of performance measures. 

As an example, in a multi-stage manufacturing process, each scheduled job needs to go through several 

operations to become a finished product. In a single machine scenario, any machine breaks down could 

cause delay of the entire production, as reported in [29], [27].  

Most of the investigations pertaining to job-shop scheduling aim to optimise only a single objective [41], 

[45]. Indeed, the survey in [8] reveals that multi-objective problems rank second after the makespan 

minimisation problems in Artificial Intelligence (AI) research trends between 1997 and 2012. It is worth 

noting that while most AI-based solutions involving the Genetic Algorithm (GA) and agent-based 

systems have shown an increasing trend in the literature, only few of them focus on solving real-world 

industrial problems [8]. Job-shop scheduling problem is identified as one of the decision making parts in 

scheduling optimisation in another survey [23]. It has been used to decide the operation sequencing with 

different effective chromosome representations in the Multi-Objective Evolutionary Algorithm (MOEA).  

Based on the aforementioned motivation, we investigate a real-world job-shop scheduling problem of a 

manufacturing company in this study. Specifically, the problem deals with multi-objective functions, and 

optimisation is performed using a MOEA-based model. The enumeration method is used to produce 

theoretically optimal solutions as the baseline results for comparison purposes. Before presenting the 

details, the related literature and the background of the proposed model are presented in the next section. 

The case study is then elaborated in details, which is followed by the results and discussion. A summary 

covering the conclusions and suggestions for further work is presented in the last section.  

 



2 Heuristic-based Scheduling Problems  
 

Methods for solving scheduling problems can be broadly classified into two categories [38]. The first is 

enumeration-based methods that utilise dynamic programming or branch-and-bound techniques to find 

the optimal solution. The second is heuristic-based search methods that find near optimal solutions. The 

enumeration-based methods eliminate candidate solutions by employing restrictive criteria. However, it is 

well-known that the enumeration-based methods are time-consuming, and are not efficient for large-scale 

problems [62], [49]. State space explosion as a result of increasing the number of state variables is the key 

limitation of dynamic programming techniques, owing to increasing number of state variables [62]. On 

the other hand, the long execution time owing to the number of variables involved in branching as well as 

the strategies used for bounding is the key limitation of branch-and-bound techniques [49]. In regards to 

heuristic-based search methods, the candidate solutions are produced by meta-heuristics searches, e.g. 

single-objective optimisation using constructive heuristics [42]. Another example is a hybrid genetic 

programming and hyper-heuristic method proposed in [41]. The method is used in a single-objective job-

shop scheduling problem for evolving dispatch rules, whereby the results show the effectiveness of the 

genetic programming-based method over hybrid genetic algorithm (GA) methods.  

In addition to the GA [52], examples of recent and classical meta-heuristics methods used to solve 

optimisation problems include Cuckoo search [28] and simulated annealing [29], [27], respectively. In 

cellular manufacturing systems, the problem of time-tabling in a flowline was investigated in [52]. A 

number of objectives were examined, i.e., minimising machine idle-time, makespan, and total flow-time. 

In [29], [27], a job-shop scheduling problem on single machines was studied using a greedy- heuristic 

model with SA and a Pareto-based SA model. Two objectives were considered, i.e., minimising material 

costs and tardiness. The same job-shop scheduling problem was evaluated using a Pareto-based Cuckoo 

search model in [28]. In a recent study [64], the GA was evaluated against a branch-and-bound method in 

a single objective optimisation problem. The experimental results indicated that the GA was able to 

perform well in minimising makespan under a job-shop scheduling problem with two machines.  

A hybrid Particle Swarm Optimisation (PSO) algorithm was used to solve multi-objective job-shop 

scheduling problem in [66], i.e. minimising makespan, working time spent on a machine, and total 

working time over all machines. The multi-objective functions were combined using the weighted-sum 

method. The results showed that PSO was able to handle large scale job-shop scheduling problems 

effectively. A similar multi-objective method was described in [63]. Specifically, a multi-objective 

combinatorial model with the variable neighborhood descent meta-heuristic method was employed to 

evaluate the effectiveness of handling job-shop scheduling problems. In [50], a hybrid SA and GA model 

was proposed. The hybrid model was used to tackle the problem pertaining to minimisation of makespan, 

workload of the most loaded machine, and the total workload of all machines. The proposed hybrid model 

was able to reduce the computational time in achieving the optimal solutions.  

In [61], multi-objective optimisation in the context of scheduling was presented. A single-machine job-

shop scheduling problem was undertaken with a polynomial algorithm. Two objective functions, i.e. 

minimising the mean flow-time and maximising tardiness, were optimised simultaneously using two rule-

based methods. The efficient points or ideal solutions were enumerated, and the results were compared 

with those from the rule-based methods. The optimum values obtained for both objectives were close to 

the enumerated efficient points, with negligible computational time. A Pareto-based MOEA, i.e. Non-

dominated Sorting Genetic Algorithm II (NSGA-II), was employed to tackle problems related to 

makespan and delay of schedules in [65]. Both objective functions were minimised simultaneously for 

various job-shop scheduling scenarios. Another Pareto-based evolutionary algorithm [13] was used to 

tackle a Multi-objective Optimisation Problem (MOP). The objectives comprised maximising the 

workload while minimising both total workload and makespan. Table 1 shows a variety of recent models 

used to tackle MOPs in the manufacturing domain.  

From the perspective of machine learning, the use of ensemble methods is useful for performance 

enhancement. DEMETER [25], as an example, is an effective ensemble-based weather prediction system. 

It provides forecasts of atmospheric states with probabilistic estimation. In another study, an ensemble 

method comprising tractable models is used to tackle the problem of articulated human pose estimation in 



video streams [47]. Using the human VideoPose2.0 data set, the proposed ensemble model shows better 

performance as compared with the results from a simple max-marginal combination algorithm.  

In [58], a hybrid machine learning algorithm, i.e. the Radial Basis Function (RBF) neural network, with 

an evolutionary algorithm for undertaking feature selection and classification problems, was proposed. 

The proposed model utilises the divide-and-cooperative mechanism from the evolutionary algorithm to 

process the hidden layer structure and dominant features of the RBF network. The model is able to 

produce better accuracy and reduce the number of features involved in tackling complicated multi-

objective classification tasks.  

Two NP-hard scheduling problems were tackled using an ensemble-based GA model in [11]. The 

ensemble model inherits the crossover and mutation procedures of its predecessor, i.e. a Self-Guided GA 

[10], while the evolutionary process is guided by the incorporated probabilistic model. The ensemble 

model outperforms individual Estimation of Distribution algorithms as well as other algorithms in the 

literature [11]. However, the scheduling problem combines both the earliness and tardiness as a single-

objective function. In this study, the Pareto-based MOEA is adopted. Specifically, an ensemble of 

modified micro genetic algorithms [55] is adopted for tackling multi-objective job-shop scheduling 

problems. The background of the Pareto principles and the ensemble model is explained in the next 

section.  

Table 1 Heuristic-based models for Multi-objective Job-Shop Scheduling Problems  

Year Model Objectives 

2014 Hybrid discrete firefly algorithm Maximising the completion time, workload of the 

critical machine and total workload of all machines 

[31].   

2014 Improved sheep flock heredity 

algorithm and artificial bee colony 

algorithm 

Minimising the makespan and total flow-time [9]. 

2015 Heuristic-based ϵ-constraint method Minimising the makespan and sum of flow-time, 

and maximising tardiness [2]. 

2015 Bi-Variant block-based estimation 

and distribution algorithm 

Minimising the makespan and total flow-time [59]. 

2015 ELECTRE-based multi-objective 

GA 

Minimising the makespan and overtime costs [46]. 

2015 Imperialist competitive algorithm Minimising the makespan and total tardiness [32]. 

2015 Modified micro GA Minimising tardiness and maximising cost saving 

[57]. 

2016 Goal-guided multi-objective based 

models 

Minimising tardiness conflicts with overtime; 

tardiness conflicts with robustness, and overtime 

with robustness promotes each other. [67]. 

2016 Discrete harmony search algorithm Minimising the makespan of machine and the mean 

of earliness and tardiness [22]. 

 

3 Background of Work  
 

3.1 Pareto Optimality Principle  

Pareto optimality advocates the 80-20 principle [43], e.g. 80% of wealth is held by 20% of the population, 

or 80% of effects originate from 20% of causes. This principle is useful to provide explanation pertaining 

to many real-world problems, e.g. sport ranking [19], biological research [48], [51], and pharmacological 

studies [6], [34]. A solution is said to be Pareto-optimal (i.e. a non-dominated solution) when one 

objective cannot be further improved without causing a simultaneous degradation in at least another 

objective [15]. The Pareto front (pf) refers to a Pareto optimal set of non-dominated solutions.  

MOPs entail problems that require multiple objectives to be satisfied simultaneously [7], [33]. Some 

examples of MOPs are maximising profit subject to production cost and time, minimising loss in 

emission and transmission as well as cost in economic dispatch problems. Mathematically, an 



optimisation (either maximisation or minimisation) problem requires finding x ∈  ℝb of free parameters, x 

= {x0,…,xb}, xi ∈  ℝ. The optimisation problem is subject to f : ℝb → ℝ, which is also known as the 

objective function, with a subset of b-tuples of real numbers [4]. For a minimisation problem, f(x) → 

minimisation derived under n number of objective functions in f(x) for undertaking an MOP can be 

derived as follows.  

 pf = {f(x*) | x*∈  η} (1)  

 pftrue ≡{f(x) ∣ ∀ x ∈  pf} (2)  

 Subject to   

 f(x) = f1(x),…,fi(x),…,fn(x)}, (3) 

 p ≡ f(x*) = {f1(x*),…,fi(x
*),…,fn(x*)} (4) 

The Pareto front [17] or the objective vector [68], i.e. pf, is derived based on Equation 1. Note that pf is 

also known as the Pareto optimal set [69] [17] or Pareto set [68]. The solutions in the Pareto optimum set 

i.e. η ≡{x ∈ F ∣¬∃x* ∈ F, fi(x
*) ≼ fi(x)} indicate the non-dominated solutions [53] in accordance with 

strictly Pareto dominance, which is denoted using symbol ≼ in a feasible region, F. Note that x* 

dominates x, i.e. x*≼ x, as in the Pareto optimum solutions, p = {p1,p2,…}, corresponding to decision 

variables x = {x1,x2,…}. x* is said to be decision variables of the Pareto optimal set in a minimisation 

MOP if and only if ∀i∈n,x∈F fi(x
*) ≼ fi(x) . A point x*∈ x is said to belong to a strictly Pareto optimal 

set if there are no other x ∈ x and x≠x* such that fi(x
*) ≼ fi(x) [16].  

MOP-based pf is derived using p. Specifically, the search space contains pf. The values pertaining to an 

objective function corresponds to x, and is subject to the Pareto dominance concept. Therefore, f : ℝb → 

ℝn, consists of n ≥ 2, and f : ℝb → ℝ. Sets ℝb and ℝn represent the decision variable space and objective 

function space, respectively. The optimal solutions are pf, which are said to be the non-dominated 

solutions for solving MOPs.  

Notice that pftrue consists of pf (Equation 1), which is a solution set generated from an EA using S. In 

other words, pftrue contains the solution points that satisfy f(x) (i.e. solutions from Equation 3).  They are 

known as the exact solutions in solving an MOP based on the enumeration method [40], [39]. For multi-

objective job-shop scheduling problems, the solutions from the enumeration method represent the ideal 

(optimal) solutions, which are produced based on a brute-force search strategy.  

An EA is capable of searching and identifying a set of possible solutions to form pf [16]. A particular 

objective function, i.e. i, from Equation 1 to be optimised using a b-tuple of decision vector (x*) can be 

formulated as follows.  

 fi : x
* → ℝ (5)  

Let I be the population space of the EA. Each individual of the population, a ∈  I, represents a candidate 

solution of the optimisation problem.  A transformation to yield a fitness value (a real number) is derived 

as follows [5].  

 Φ : I → ℝ (6)  

The fitness function of an MOEA consists of multiple single-objective problems, i.e., [16].  



 Φ′ : I → ℝn,n ≥ 2 (7)  

where I indicates the initial parent population and n indicates multiple objective functions. In essence, the 

MOEA yields pf that comprises the optimal solution(s) [20] by taking into consideration multiple 

objective functions, as in Equation 7.  

There are a number of indicators to measure the performance of an MOEA with respect to the Pareto 

optimality in tackling MOPs. Among them, the Generational Distance (Igd) [18], [20] is widely used. Igd 

provides an indication pertaining to the distance from the solutions in pf with respect to those in pftrue as 

follows [18], [20].  

 Igd(pftrue,pf) =  (8)  

where n = |pf|, di is the Euclidean distance between a solution and the nearest solution in pftrue. When all 

the pf solutions reside in pftrue, then Igd(pftrue,pf) = 0.  

3.2 Modified Micro Genetic Algorithm (MmGA)  

A Modified micro GA (MmGA) [54] is employed as the building block to develop an ensemble model for 

tackling multi-objective job-shop scheduling problems in this study. MmGA is an extension of the 

traditional micro GA (mGA) [17].  

mGA was formulated based on the GA principles [26], but with a small population size. It usually 

contains only three to six chromosomes in its population. Based on the findings in [26], [17], [36], [12], it 

has been shown that mGA is capable of achieving convergence in undertaking optimisation problem with 

arbitrary chromosome lengths, in spite of its small population size. This is owing to two main properties 

of mGA, which is designed to overcome the limitations associated with its small population size in 

solving MOPs [17], viz, (i) a re-initialisation procedure for its population size in random generation of 

chromosomes; (ii) a special population memory structure that comprises both rm (replaceable memory) 

and irm (irreplaceable memory) components.  

Figure 1 depicts that mGA has two operational cycles: (i) a nominal evolution cycle executes the generic 

crossover, mutation, and selection operations with re-initialisation of the working population memory 

within a pre-specified number of rounds; (ii) an outlier evolution cycle that repeats the entire nominal 

evolution cycle within a pre-specified number of rounds in producing its search results, i.e. pf. It should 

be noted unlike the traditional GA, mGA has a smaller population size, and it uses a special strategy to 

preserve diversity [1]. On top of the normal mutation operation, a re-start strategy is utilised to introduce 

diversity in the mGA population overtime [17], [37], [36].  

 



 

Fig. 1 A schematic diagram of the mGA, adopted from [17]. 

On the other hand, MmGA is derived to improve its convergence capability towards pftrue without 

sacrificing the salient properties of mGA. To achieve this aim, two modifications are introduced, viz. an 

new elitism method based on the principle of NSGA-II and a new rule for population formation [54]. In 

the new elitism method, a user-defined elite-preservation size (ω) of selected chromosomes (x) and target 

chromosomes (y) are derived. The elitism method produces a vector z as its outcome, which consists of 

ω-elite chromosomes, i.e. z = {¬(x ∩ y) ∪  y}[54]. Note that x and y are the vectors of chromosomes, 

which exist in the evolutionary and filter processes within both nominal and outlier evolution cycles, 

respectively. The population of chromosomes is re-initialised (p) using four main components in MmGA, 

i.e. p = {irm∪≼s(¬(rm∩irm))∪≼s(¬(rm∩irm∩ ))∪≼s(¬(rm∩irm∩ ∩r))} [54]. p is generated using 

the Pareto dominance-based merge sort procedure (≼s), a potential solutions for the MOP ( ), and a 

vector of r newly randomised chromosomes, as well as existing replaceable memory (rm) and 

irreplaceable memory (irm) in mGA.  

3.3 Modified Micro Genetic Algorithm Ensemble  

To improve the robustness of MmGA, an ensemble MmGA model is formed for tackling MOPs [56], 

[55]. Figure 2 shows a schematic diagram of the MmGA ensemble, which is used to search for pf in 

solving multi-objective job-shop scheduling problems. To construct an ensemble model, multiple 

individual MmGA entities are grouped together with a decision combination module.  

 



 

Fig. 2 A schematic diagram of the proposed MmGA ensemble. 

In this study, we aim to improve convergence of the MmGA solutions towards pftrue by using the 

ensemble model. A number of useful techniques are introduced into the MmGA ensemble to realize this 

objective [55]. Firstly, an elite selection technique based on majority voting is devised. Both a 

reinforcement learning (RL) technique and an Apportionment of Credit (AoC) technique are used for 

improving the rm structure. The RL technique is also applied to rm adoption ratio. Then the Euclidean 

distance is utilised to facilitate replacement of the final rm components. The candidate solution with the 

lowest value of MOEA performance indicator (i.e. as stated in the Definition 5) is identified for 

determining the winning offspring (i.e. elite) in the process of forming pf. This elitism technique is used 

to form the accumulated rm component. The AoC scheme is used to evaluate the performance of MmGA 

members in the ensemble. Subsequently, RL is deployed for instilling the reward-penalty scheme, i.e. 

MmGA members with good quality pf are rewarded while those with poor quality pf are penalized. It 

should be noted that the RL-based selection of the rm component affects the formation of subsequent pf 

created by MmGA.  

The expected output of the MmGA ensemble represents pf from MmGA members, which is affected by 

MmGA winner in each round of feedback. Specifically, the MmGA ensemble produces pf = 

{pf1,…,pfα}∥  pfi →  where  = { 1,…, β}. Note that α and β denote the maximum feedback 

round and the ensemble size of MmGA, respectively. pf consists of α-feedback round search results, 

which is based on β-output from the MmGA members. As such, it is an extended derivation of pf 

(Equation 1) with multiple MmGA models in an ensemble structure. The next section describes the 

details of the job-shop scheduling case study using both MmGA and the ensemble models.  

4 A Case Study  
 

To demonstrate the usefulness of the MmGA ensemble, we examined a real-world multi-objective job-

shop scheduling problem with information solicited from a company in Australia. The task required 

scheduling a set of (n jobs) for a single machine. The machine was available at all times, but had the 

capability of processing only one job at any specific time. An example is provided to illustrate the job-

shop scheduling problem.  

In general, we first generate a total of n jobs. Each job i, i = 1,…,n, requires a specific processing time, pi, 

and has a due date, di. Based on the completion day, ci, we need to calculate cost-saving, Si of job i, its 

tardiness, Ti = ci - di, as well as total earliness, Ei = di - ci. As such, each job has parameters Ti, Ei, and Si 

∈  ℝ+. Therefore, this job-shop scheduling problem entails finding the processing order of n jobs subject 

to MOEA fitness functions, i.e. as stated in the Definition 4.  



 
Maximising total cost-saving (S dollars),   

 
which is formulated as a minimisation function of  

 
f1 = -1 ×∑ i=1

nS i (9)  

 
Minimising total tardiness (T days) of   

 
f2 = ∑ i=1

nT i (10)  

 
Maximising total earliness (E days),   

 
which is formulated as a minimisation function of  

 
f3 = -1 ×∑ i=1

nE i (11)  

In accordance with the company policy, when a job is completed on or before its due date, tardiness does 

not arise. Otherwise, tardiness of a job, Ti, occurs based on the difference in days, which is computed 

from the difference between the completion time of its last operation and its due date. A similar 

formulation is applied to determine earliness of a job. As such, when a job is completed after its due date, 

earliness does not arise. Otherwise, earliness of a job, Ei, occurs based on the difference in days, which is 

computed from the difference between the completion time of its last operation and its due date. Two 

examples to highlight the main computation of the job-shop scheduling problems are presented as 

follows.  

Example 1 A 5-job problem is generated, as shown in Table 2. The starting date of all five jobs is the 

same, i.e., the schedule start date: 18/09/2015. Each job has a given due date.  

Table 2 Requirements of the 5-job problem  

Job Due date 

(Day/Month/Year) 

Duration for Completion 

(Day.Hours:Minutes) 

1 19/09/2015 07:40 

2 24/09/2015 06:40 

3 24/09/2015 15:00 

4 01/10/2015 1.01:00 

5 26/09/2015 09:00 

 

Based on the information, tardiness and earliness of each job, i.e. Ti and Ei, are computed. As an 

example, the order of 5 jobs is x′ = {1,4,5,2,3}. Let the daily working hour start at 09:00, and finish at 

17:00. Table 3 shows an example of the detailed schedule and the performance calculation based on the 

requirements in Table 2. The starting time and date of Job 1 is 09:00 on 18/09/2015, and it has been 

completed after 7 hours and 40 minutes, i.e. at 16:40 on 18/09/2015. Subsequently, the Job 4 is taken up, 

and it has been completed after 25 hours, i.e. 09:40 on 22/09/2015 (based on 8 working hours per day). 

The earliness (in day) of each job is computed by comparing the given due date and the completion date 

(last column of Table 3). Notice that Jobs 1, 4 and 5 result in earliness ranging from 1 to 10 days, while 

Jobs 2 and 3 incur tardiness of 1 and 2 days, respectively. All tardiness and earliness scores are shown in 

Table 3.  

 

 

 

 



Table 3 A numerical example of a 5-job problem  

Job Start 

Date Time 

Completion 

Date Time 

T 

Days 

E 

Days 

1 18/09 09:00 18/09 16:40 0 19/09 - 18/09 = 1 

4 18/09 16:40 22/09 09:40 0 01/10 - 22/9 =10 

5 22/09 09:40 24/09 10:40 0 26/09 - 23/09 = 3 

2 24/09 10:40 25/09 09:20 25/09 - 24/09 = 1 0 

3 25/09 09:20 26/09 16:40 26/09 - 24/09 =2 0 

Total 3 14 

 

One of the important factor considered by the company is cost-saving of materials. There is a cost-saving 

factor for the material used when two jobs are performed in sequence, i.e. Sv,w for Jobs v and w.  

Example 2 Table 4 shows the material cost-saving matrix for each pair of jobs. Equation 9 is used to 

calculate the cost-saving factor.  

As an example, the order of 5 jobs is x′ = {(1,4),(5,2),3}, where pair (1,4) with S1,4 = 1.95 is first 

conducted, leading to x′ = {-,-,5,2,3}. Next, pair (5,2) with S5,2 = 1.14 is conducted, leading to x′ = {-,-,-

,-,3}, i.e. Job 3 is standalone. As such, the total cost-saving is 1.95 + 1.14 = 3.09.  

Table 4 Cost-saving matrix of the 5-job problem  

Sv,w Job 1 Job 2 Job 3 Job 4 Job 5 

Job 1 0.00 1.70 2.16 1.95 1.80 

Job 2 1.70 0.00 2.60 1.90 1.14 

Job 3 2.16 2.60 0.00 3.36 2.61 

Job 4 1.95 1.90 3.36 0.00 2.46 

Job 5 1.80 1.14 2.61 2.46 0.00 

 

Table 5 shows the optimal solutions obtained using the enumeration method. They serve the Definition 3 

as well as the baseline results for performance evaluation and comparison with those from the MmGA 

models.  

Table 5 Non-dominated solutions covering S, T and E from the enumeration method for the 5-job 

problem  

Job Order S (dollars) T (days) E (days) 

(1 - 5) - 2 - (3 - 4) 5.16 0 19 

(1 - 5) - (4 - 3) - 2 5.16 2 15 

(1 - 5) - (3 - 4) - 2 5.16 1 16 

(4 - 3) - (1 - 5) - 2 5.16 5 13 

1 - (4 - 5) - (2 - 3) 5.06 1 13 

1 - (3 - 2) - (4 - 5) 5.06 0 16 

(4 - 1) - (3 - 5) - 2 4.56 4 12 

(1 - 4) - 2 - (3 - 5) 4.56 0 13 

(4 - 1) - (3 - 2) - 5 4.55 3 12 

1 - (4 - 3) - (2 - 5) 4.5 0 12 

 

 

To understand the MmGA ensemble used in this study, its algorithm is shown in Figure 3. Lines 1 to 10 

show the MmGA feedback (fb) cycles, which contain the objective functions (i.e., Equations 9 to 11) and 

the associated fitness indicators (i.e., S, T, and E).  

 

 



1:  repeat  

2:   for each i-th individual ensemble MmGA do  

3:   Let xi
′ = {a 1,…an}  

4:   ∴  xi ← a processing order of job i based on xi
′  

5:   i ← Pareto front of MmGA based on xi  

6:   end for  

7:   elitefb ← elite-selector based on fb where fb = {…, i,…}  

8:   pffb ← preserve good x* of elite fb based on fb  

9:   Update rm in MmGA with x*  

10:  until fb = Maximum feedback cycles or pffb = pftrue is met  

11:  return pf  

Fig. 3 The pseudo-code of the MmGA ensemble for tackling the job-shop scheduling.  

Let a be the sequence of n jobs, and a set of n jobs is represented by xi
′ = {a1,…an} (line 3, Figure 3). As 

such, the length of the MmGA chromosome is n. In essence, each chromosome represents the decision 

vector of a sequence of n jobs. As an example, let consider n = 5, each chromosome allele is given a 

probability value from 0 to 1, e.g. xi
′ = {0.1,0.5,0.3,0.9,0.8}. Based on the probabilities values ranging 

from the smaller to the larger, the sequence of n jobs is {1,3,2,5,4}. Table 6 shows all possible 

combinations of paired jobs for n = 5 to 8. For n = 5, there are three possible combinations of paired jobs. 

Note that the search space of n = 5 is (n! × 3) = 360, while that of n = 8 is (n! × 6) = 241,920. It is obvious 

that the search space grows rapidly with respect to increasing number of jobs. Therefore, the challenge of 

obtaining the optimal solutions, as fulfilled the Definition 2, increases tremendously even for a moderate 

job size of 8. 

For the 5-job problem, the job processing schedule, cost-saving matrix, and the associated optimal results 

from the enumeration method are shown in Tables 2, 4, and 5, respectively. To comprehensively evaluate 

the effectiveness of the MmGA ensemble model for this job-shop scheduling problem, four experimental 

configurations with 5 to 8 jobs have been used for evaluation.  The software program has been developed 

using a combination of Java and C programming languages.  The programs have been executed using the 

Intel Xeon-based server with 2.5GHz and 8GB RAM in terms of speed and memory, respectively.  

5 Results and Discussion  
 

We conducted two experimental studies to evaluate the usefulness of the single  and ensemble MmGA 

models. The first experiment was concerned with a two-objective job-shop scheduling problem, i.e., 

minimising tardiness and maximising cost saving. The second experiment included another objective, i.e., 

maximising earliness, making it a more complex three-objective job-shop scheduling problem. The 

optimal results from the enumeration method served as the baseline performance for comparison with the 

results from the MmGA models. To quantify the performance of the MmGA models statistically, the 

bootstrap method [21] was employed to compute the average results from 30 runs with 100,000 re-

samplings as well as the associated 95% confidence intervals. Note that bootstrap is a useful method to 

determine the population parameters based on a small sample size, and its effectiveness has been shown 

in different domains including medicine [30], [35], signal processing [70], and biometrics [60]. The 

unique non-dominated solutions and the search space associated with n jobs are shown in Table 7.  

 

 

 

 



Table 6 Possible pair variations of n jobs  

Size Pair variation Total 

5 (job1-job2),(job3-job4),job5; 

job1,(job2-job3),(job4-job5); 

(job1-job2),job3,(job4-job5); 

3 

6 (job1-job2),(job3-job4),(job5-job6); 

(job1-job2),job3,(job4-job5),job6; 

job1,(job2-job3),(job4-job5),job6; 

job1,(job2-job3),job4,(job5-job6); 

4 

7 job1,(job2-job3),(job4-job5),(job6-job7); 

job1,(job2-job3),job4,(job5-job6),job7; 

(job1-job2),(job3-job4),(job5-job6),job7; 

(job1-job2),job3,(job4-job5),(job6-job7); 

(job1-job2),(job3-job4),job5,(job6-job7); 

5 

8 (job1-job2),(job3-job4),(job5-job6),(job7-job8); 

(job1-job2),job3,(job4-job5),(job6-job7),job8; 

(job1-job2),job3,(job4-job5),job6,(job7-job8); 

(job1-job2),(job3-job4),job5,(job6-job7),job8; 

(job1-job2),(job3-job4),job5,job6,(job7-job8); 

job1,(job2-job3),(job4-job5),(job6-job7),job8; 

job1,(job2-job3),(job4-job5),job6,(job7-job8); 

job1,(job2-job3),job4,(job5-job6),(job7-job8); 

8 

 

Table 7 The job pair pattern for the job-shop scheduling  

Jobs Total search space size 

5 5! x 3 = 360 

6 6! x 4 = 2,880 

7 7! x 4 = 20,160 

8 8! x 6 = 241,920 

 

5.1 Two-objective Experiment  

For this two-objective experiment, the average results in minimising tardiness and maximising cost 

saving are shown in Table 8. It can be observed that the MmGA ensemble model yielded a comparable 

performance as those of the enumeration method and the MmGA model. This could be justified by the 

95% confidence intervals of the average results. Specifically, the lower and upper bounds of the 95% 

confidence intervals of the results of the MmGA ensemble contained the best and worst results from the 

enumeration method as well as the MmGA model for tardiness and cost-saving. In other words, there was 

no statistical difference in performance between the enumeration method and the proposed MmGA 

models for job size n from 5 to 8. The computational cost of the MmGA ensemble was also lower than 

those from the published model in [57] for all problems.  

5.2 Three-Objective Experiment  

For this three-objective problem, the same experiment with 30 runs was conducted. An additional 

objective of maximising earliness was included, on top of the two objectives in the previous experiment. 

There are a few key observations. In addition to producing the optimal (non-dominated) results for 

different job sizes, the MmGA ensemble model was capable of yielding the unique solutions existed in 

the optimal results, as shown in Table 9. As an example, out of a total of 1019 solutions produced by the 

MmGA ensemble for the 5-job problem, 219 non-dominated solutions were found. Among these non-

dominated solutions, there were five unique solutions. The MmGA ensemble was able to identify all these 

five unique solutions. This constituted a useful feature in practical environments, because the decision 

makers could have the option to choose one of the unique solutions to meet all the required objectives 

under different conditions. 

 

 



Table 8 A comparison of S, T, and E for the enumeration method, and the single and ensemble MmGA 

models for job-shop scheduling  

 Enumeration 

Method 

MmGA [57] Proposed MmGA ensemble 

(worst to 

best) [57] 

Lower 

Bound 

Mean Upper 

Bound 

Lower 

Bound 

Mean Upper 

Bound 

5 Jobs 

S (dollars)  4.50 to 5.16  4.97  5.03  5.08  5.16  5.16  5.16  

T (days)  5.00 to 0.00  0.87  0.85  0.83  0.17  0.07  0.00  

E (days)  -  -  -  -  20.33  20.03  19.67  

Time (ms)  > 1000  2.8  3.23  4.23  1.47  1.73  2.37  

6 Jobs 

S (dollars)  11.09 to 14.87  11.92  12.26  12.67  14.57  14.72  14.80  

T (days)  21.00 to 12.00  15.08  14.30  13.77  14.40  13.67  13.07  

E (days)  -  -  -  -  14.00  13.7  13.27  

Time (ms)  > 1000  10.37  12.93  17.37  1.87  2.13  2.83  

7 Jobs 

S (dollars)  13.68 to 14.49  13.93  14.00  14.08  14.27  14.36  14.43  

T (days)  30.00 to 17.00  23.67  22.49  21.46  22.23  21.33  20.60  

E (days)  -  -  -  -  16.67  15.67  14.60  

Time (ms)  > 1000  4.23  4.53  5.17  1.87  2.17  2.87  

8 Jobs 

S (dollars)  17.50 to 19.06  17.74  17.86  18.01  18.35  18.5  18.67  

T (days)  31.00 to 20.00  26.62  25.90  25.26  26.93  26.33  25.73  

E (days)  -  -  -  -  16.40  15.93  15.37  

Time (ms)  > 1000  4.87  5.17  5.43  2.10  2.50  3.80  

 

Table 9 The non-dominated solutions of the MmGA Ensemble  

Jobs No. of non-dominated 

solutions found 

No. of unique non-dominated 

Solutions 

5 219/1019 5 

6 39/1111 8 

7 10/1039 4 

8 3/913 3 

 

It is worth noting that the enumeration method consumed more than a second to produce the optimised 

results, as compared with those of the MmGA-based models, i.e., from 2.8ms to 5.43ms for single 

MmGA and from 1.43ms to 3.8ms for the MmGA ensemble, using the same hardware and server 

configurations.  Comparing the single and the ensemble MmGA models, the latter is statistically more 

efficient from the computational time perspective in tackling MOP-based job-shop scheduling. This is 

supported by the 95% confidence levels of the mean computational time, in which the upper bounds of 

the MmGA ensemble are better than the lower bounds of the single MmGA for all computational 

durations summarised in Table 8.  

 

6 Conclusions  
 

The application of an MOEA model, i.e. the MmGA ensemble, to real-world multi-objective job-shop 

scheduling problems has been demonstrated. The details of the scenarios are based on a manufacturing 

company in Australia. All jobs have to be scheduled on a single machine with one job at a time. The 

MmGA ensemble has been deployed to optimize the processing orders of 5 to 8 jobs. The MmGA 

ensemble model is able to produce statistically equivalent performance as compared with those from the 

enumeration method, as ascertained by the 95% confidence intervals of the average results. In addition, 

more than one unique solutions could be solicited from the MmGA ensemble model; therefore allowing 

the decision makers to have options in selecting the most appropriate solution that is able to meet all the 

objectives under different conditions.  



Although positive results have been obtained, it is necessary to further evaluate the effectiveness of the 

MmGA ensemble model with multiple MOP indicators, e.g. the inverted generational distance and spread 

[20]. In addition, an agent-based modelling method [14], [3] can be used to formulate the elite-selection 

scheme and for tracking the behaviour of individual MmGA models. Besides that, the applicability of the 

proposed model to undertaking other MOPs can be evaluated. All these constitute the direction for further 

work.  
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