Skip to main content

Advertisement

Log in

A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A realistic and accurate product cost estimation is of high importance during the design phases of products and assembly lines. This paper presents a methodology that aims at supporting decision makers during the design phases of assembly lines by taking into consideration product designs, processes and resources alternatives. First, we introduce a new variant of the Assembly Line Balancing and Equipment Selection Problem, in which Product Design Alternatives are considered. Since the ability to estimate product costs provides grounds for making better decisions, a new detailed cost model whose aim is to translate the complex and interrelated consequences of product design and manufacturing technologies and processes choice into one single cost metric is proposed. In order to solve the problem under study, 34 Multi-Objective Algorithms were developed. The list of developed algorithms includes variants of Evolutionary Algorithms, Ant Colony Optimisation, Artificial Bee Colony, Cuckoo Search Optimisation, Flower Pollination Algorithm, Bat Algorithm and Particle Swarm Optimisation. The performances of all these algorithms are compared based on fifty well-known problem instances in accordance with four multi-objective quality indicators. Finally, the algorithms are ranked using a nonparametric statistical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The statistical analysis is based on the paper repository of Microsoft Academic, available at following address www.academic.research.microsoft.com/ and by using following keywords: Ant Colony Algorithm, Bee Colony Algorithm, Cuckoo Search Algorithm, Particle Swarm Optimisation, Genetic Algorithm, Line Balancing Problem, Line Design Problem.

References

  • Akay, B. (2013). Synchronous and asynchronous pareto-based multi-objective artificial bee colony algorithms. J. Global Optim., 57(2), 415–445. doi:10.1007/s10898-012-9993-1.

    Article  Google Scholar 

  • Amen, M. (2000). An exact method for cost-oriented assembly line balancing. Int. J. Prod. Econ., 64(1–3), 187–195. doi:10.1016/S0925-5273(99)00057-2.

    Article  Google Scholar 

  • Aǧpak, K., & Gökçen, H. (2005). Assembly line balancing: Two resource constrained cases. Int. J. Prod. Econ., 96(1), 129–140. doi:10.1016/j.ijpe.2004.03.008.

    Article  Google Scholar 

  • Asiedu, Y., & Gu, P. (1998). Product life cycle cost analysis: State of the art review. Int. J. Prod. Res., 36(4), 883–908. doi:10.1080/002075498193444.

    Article  Google Scholar 

  • Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation, CEC 2007 (pp. 4661–4667). doi:10.1109/CEC.2007.4425083.

  • Bagher, M., Zandieh, M., & Farsijani, H. (2011). Balancing of stochastic U-type assembly lines: An imperialist competitive algorithm. Int. J. Adv. Manuf. Technol., 54(1–4), 271–285. doi:10.1007/s00170-010-2937-3.

    Article  Google Scholar 

  • Barán, B., & Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem with time windows. In Proceedings of the 21st IASTED international conference on applied informatics (pp. 97–102).

  • Barton, J. A., Love, D. M., & Taylor, G. D. (2001). Design determines 70% of cost? A review of implications for design evaluation. J. Eng. Des., 12(1), 47–58. doi:10.1080/09544820010031553.

    Article  Google Scholar 

  • Battaïa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. Int. J. Prod. Econ., 142(2), 259–277. doi:10.1016/j.ijpe.2012.10.020.

    Article  Google Scholar 

  • Borba, L., & Ritt, M. (2014). A heuristic and a branch-and-bound algorithm for the assembly line worker assignment and balancing problem. Computers and Operations Research, 45, 87–96. doi:10.1016/j.cor.2013.12.002.

    Article  Google Scholar 

  • Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. Eur. J. Oper. Res., 183(2), 674–693. doi:10.1016/j.ejor.2006.10.010.

    Article  Google Scholar 

  • Bukchin, J., & Rubinovitz, J. (2003). A weighted approach for assembly line design with station paralleling and equipment selection. IIE Trans., 35(1), 73–85. doi:10.1080/07408170304429.

    Article  Google Scholar 

  • Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize equipment cost. IIE Trans., 32(7), 585–598. doi:10.1023/A:1007646714909.

    Article  Google Scholar 

  • Capacho, L., & Pastor, R. (2006). The ASALB problem with processing alternatives involving different tasks: Definition, formalization and resolution. Computational Science and Its Applications-ICCSA, 3982, 554–563. doi:10.1007/11751595_59.

    Article  Google Scholar 

  • Capacho, L., & Pastor, R. (2008). ASALBP: The alternative subgraphs assembly line balancing problem. Int. J. Prod. Res., 46(November 2013), 3503–3516. doi:10.1080/00207540701197010.

    Article  Google Scholar 

  • Capacho, L., Pastor, R., Dolgui, A., & Guschinskaya, O. (2009). An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem. J. Heuristics, 15, 109–132. doi:10.1007/s10732-007-9063-x.

    Article  Google Scholar 

  • Capacho, L., Pastor, R., Guschinskaya, O., & Dolgui, A. (2006). Heuristic methods to solve the alternative subgraphs assembly line balancing problem. In 2006 IEEE international conference on automation science and engineering (pp. 501–506). IEEE. doi:10.1109/COASE.2006.326932.

  • Chandrasekaran, K., Ramani, K., Sriram, R., Horváth, I., Bernard, A., Harik, R., et al. (2013). The evolution, challenges, and future of knowledge representation in product design systems. Comput. Aided Des., 45(2), 204–228. doi:10.1016/j.cad.2012.08.006.

    Article  Google Scholar 

  • Chen, J. C., Chen, C. C., Su, L. H., Wu, H. B., & Sun, C. J. (2012). Assembly line balancing in garment industry. Expert Syst. Appl., 39(11), 10073–10081. doi:10.1016/j.eswa.2012.02.055.

    Article  Google Scholar 

  • Chica, M., Cordón, Ó., & Damas, S. (2011). An advanced multiobjective genetic algorithm design for the time and space assembly line balancing problem. Computers & Industrial Engineering, 61(1), 103–117. doi:10.1016/j.cie.2011.03.001.

    Article  Google Scholar 

  • Coello Coello, C. A., & Sierra, M. R. (2004). A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In Proceedings of the third Mexican international conference on artificial intelligence (MICAI’2004) (pp. 688–697). doi:10.1007/978-3-540-24694-7_71.

  • Corominas, A., Ferrer, L., & Pastor, R. (2011). Assembly line balancing: General resource-constrained case. Int. J. Prod. Res., 49(12), 3527–3542. doi:10.1080/00207543.2010.481294.

    Article  Google Scholar 

  • Coughlin, M. K., & Scott, M. J. (2013). An activity-based costing method to support market-driven top-down product family design. In 39th Design automation conference (Vol. 3A, p. V03AT03A026). ASME. doi:10.1115/DETC2013-12264.

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. IEEE Trans. Evol. Comput.,. doi:10.1109/TEVC.2002.804322.

    Article  Google Scholar 

  • Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18. doi:10.1016/j.swevo.2011.02.002.

    Article  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput., 1(1), 53–66. doi:10.1109/4235.585892.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant systems: Optimization by a colony of cooperative agents. IEEE Transactions on Man, Machine and Cybernetics-Part B, 26(1), 1–13.

    Article  Google Scholar 

  • Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science (Vol. 1, pp. 39–43).

  • Field, F., Kirchain, R., & Roth, R. (2007). Process cost modeling: Strategic engineering and economic evaluation of materials technologies. JOM, 59(10), 21–32. doi:10.1007/s11837-007-0126-0.

    Article  Google Scholar 

  • Fixson, S. K. (2005). Product architecture assessment: A tool to link product, process, and supply chain design decisions. Journal of Operations Management, 23(3–4), 345–369. doi:10.1016/j.jom.2004.08.006.

    Article  Google Scholar 

  • Fonseca, C. M., Grunert da Fonseca, V., & Paquete, L. (2005). Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. In Evolutionary multi-criterion optimization (pp. 250–264). Guanajuato, México.

  • Fonseca, C. M., Guerreiro, A. P., López-Ibáñez, M., & Paquete, L. (2011). On the computation of the empirical attainment function. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 6576 LNCS (pp. 106–120). doi:10.1007/978-3-642-19893-9_8.

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701. doi:10.1080/01621459.1937.10503522.

    Article  Google Scholar 

  • Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat., 11(1), 86–92.

    Article  Google Scholar 

  • Fuchs, E. R. H., Field, F. R., Roth, R., & Kirchain, R. E. (2008). Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Compos. Sci. Technol., 68(9), 1989–2002. doi:10.1016/j.compscitech.2008.01.015.

    Article  Google Scholar 

  • Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., Gharibzadeh, M., & Azizi Vahed, A. (2014). Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy, 78, 276–289. doi:10.1016/j.energy.2014.10.007.

    Article  Google Scholar 

  • Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., & Gitizadeh, M. (2015). Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm. Inf. Sci., 294, 286–304. doi:10.1016/j.ins.2014.09.051.

    Article  Google Scholar 

  • Gherboudj, A., Layeb, A., & Chikhi, S. (2012). Solving 0–1 knapsack problems by a discrete binary version of cuckoo search algorithm. International Journal of Bio-Inspired Computation, 4(4), 229. doi:10.1504/IJBIC.2012.048063.

    Article  Google Scholar 

  • Gong, D. W., Zhang, Y., & Zhang, J. H. (2005). Multi-objective particle swarm optimization based on. In Advances in intelligent computing (pp. 571–580). Springer. doi:10.1007/11538059_60.

  • Graves, S. C., & Lamar, B. W. (1983). Integer programming procedure for assembly system design problems. Oper. Res., 31(3), 522–545.

    Article  Google Scholar 

  • Graves, S. C., & Redfield, C. H. (1988). Equipment selection and task assignment for multiproduct assembly system design. Int. J. Flex. Manuf. Syst., 1(1), 31–50. doi:10.1007/BF00713158.

    Article  Google Scholar 

  • Graves, S. C., & Whitney, D. E. (1979). A mathematical programming procedure for equipment selection and system evaluation in programmable assembly. In Proceedings of the 18th IEEE conference on decision and control including the symposium on adaptive processes (vol. 2, pp. 531–536). IEEE. doi:10.1109/CDC.1979.270236.

  • Guo, P., Cheng, W., & Wang, Y. (2015). Parallel machine scheduling with step-deteriorating jobs and setup times by a hybrid discrete cuckoo search algorithm. Engineering Optimization, 47(11), 1564–1585. doi:10.1080/0305215X.2014.982634.

    Article  Google Scholar 

  • Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2008). A genetic-algorithm-based optimization model for solving the flexible assembly line balancing problem with work sharing and workstation revisiting. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 38(2), 218–228. doi:10.1109/TSMCC.2007.913912.

    Article  Google Scholar 

  • Hosseini, H. S. (2007). Problem solving by intelligent water drops. In 2007 IEEE congress on evolutionary computation, October (pp. 3226–3231). IEEE. doi:10.1109/CEC.2007.4424885.

  • Hamta, N., Fatemi Ghomi, S., Jolai, F., & Akbarpour Shirazi, M. (2013). A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. Int. J. Prod. Econ., 141(1), 99–111. doi:10.1016/j.ijpe.2012.03.013.

    Article  Google Scholar 

  • Hamta, N., Fatemi Ghomi, S., Jolai, F., & Bahalke, U. (2011). Bi-criteria assembly line balancing by considering flexible operation times. Appl. Math. Model., 35(12), 5592–5608. doi:10.1016/j.apm.2011.05.016.

    Article  Google Scholar 

  • Hassan, E. A., Hafez, A. I., Hassanien, A. E., & Fahmy, A. A. (2015). A discrete bat algorithm for the community detection problem. In E. Onieva, I. Santos, E. Osaba, H. Quintián, & E. Corchado (Eds.), Lecture notes in artificial intelligence (subseries of lecture notes in computer science), lecture notes in computer science (Vol. 9121, pp. 188–199). Cham: Springer International Publishing. doi:10.1007/978-3-319-19644-2_16.

    Chapter  Google Scholar 

  • Hazır, Ö., Delorme, X., & Dolgui, A. (2014). A survey on cost and profit oriented assembly line balancing. In B. Edward (Ed.), The 19th world congress of The international federation of automatic control (pp. 24–29). doi:10.3182/20140824-6-ZA-1003.00866.

  • Hazır, Ö., Delorme, X., & Dolgui, A. (2015). A review of cost and profit oriented line design and balancing problems and solution approaches. Annual Reviews in Control, 40(October 2015), 14–24. doi:10.1016/j.arcontrol.2015.09.001.

    Article  Google Scholar 

  • Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-criterion optimization with multi colony ant algorithms. In Proceedings of evolutionary multi-criterion optimization (Vol. 1993, pp. 359–372). doi:10.1007/3-540-44719-9.

  • Johnson, M. D., & Kirchain, R. E. (2009). Quantifying the effects of product family decisions on material selection: A process-based costing approach. Int. J. Prod. Econ., 120(2), 653–668. doi:10.1016/j.ijpe.2009.04.014.

    Article  Google Scholar 

  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optim., 39(3), 459–471. doi:10.1007/s10898-007-9149-x.

    Article  Google Scholar 

  • Keller, R., Alink, T., Pfeifer, C., Eckert, C. M., Clarkson, P. J., & Albers, A. (2007). Product models in design: A combined use of two models to assess change risks. In 16th international conference on engineering design, ICED 2007 (vol. DS 42, pp. 1–12).

  • Khouja, M., Booth, D. E., Suh, M., & Mahaney, J. K. (2000). Statistical procedures for task assignment and robot selection in assembly cells. Int. J. Comput. Integr. Manuf., 13(2), 95–106. doi:10.1080/095119200129957.

    Article  Google Scholar 

  • Kim, Y. K., Kim, Y., & Kim, Y. J. (2000). Two-sided assembly line balancing: A genetic algorithm approach. Production Planning & Control, 11(1), 44–53. doi:10.1080/095372800232478.

    Article  Google Scholar 

  • Knowles, J. (2005). A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In Proceedings of 5th international conference on intelligent systems design and applications 2005, ISDA ’05 (Vol. 2005, pp. 552–557). doi:10.1109/ISDA.2005.15.

  • Kumar, A. (2007). From mass customization to mass personalization: A strategic transformation. Int. J. Flex. Manuf. Syst., 19(4), 533–547. doi:10.1007/s10696-008-9048-6.

    Article  Google Scholar 

  • Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. Eur. J. Oper. Res., 168(3), 811–825. doi:10.1016/j.ejor.2004.07.030.

    Article  Google Scholar 

  • Lian, K., Zhang, C., Gao, L., & Shao, X. (2012). A modified colonial competitive algorithm for the mixed-model U-line balancing and sequencing problem. Int. J. Prod. Res., 50(18), 5117–5131. doi:10.1080/00207543.2011.653453.

    Article  Google Scholar 

  • López-Ibáñez, M., & Stützle, T. (2012). An experimental analysis of design choices of multi-objective ant colony optimization algorithms. Swarm Intelligence, 6(3), 207–232. doi:10.1007/s11721-012-0070-7.

    Article  Google Scholar 

  • Luo, Q., Zhou, Y., Xie, J., Ma, M., & Li, L. (2014). Discrete bat algorithm for optimal problem of permutation flow shop scheduling. The Scientific World Journal, 2014, 1–15. doi:10.1155/2014/630280.

    Article  Google Scholar 

  • Martí, L., García, J., Berlanga, A., & Josè, M. M. (2009). An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion. In 2009 IEEE congress on evolutionary computation, CEC 2009 (pp. 1263–1270). doi:10.1109/CEC.2009.4983090.

  • Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1(4), 355–366. doi:10.1016/j.ecoinf.2006.07.003.

    Article  Google Scholar 

  • Mora, A. M., Merelo, J. J., Laredo, J. L. J., Millan, C., & Torrecillas, J. (2009). CHAC, A MOACO algorithm for computation of bi-criteria military unit path in the battlefield: Presentation and first results. Int. J. Intell. Syst., 24(7), 818–843. doi:10.1002/int.20362.

    Article  Google Scholar 

  • Mostaghim, S., & Teich, J. (2013). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In 2003 IEEE swarm intelligence symposium, SIS 2003—Proceedings (Vol. 2, pp. 26–33). IEEE. doi:10.1109/SIS.2003.1202243.

  • Nadeau, M. C., Kar, A., Roth, R., & Kirchain, R. (2010). A dynamic process-based cost modeling approach to understand learning effects in manufacturing. Int. J. Prod. Econ., 128, 223–234. doi:10.1016/j.ijpe.2010.07.016.

    Article  Google Scholar 

  • Nearchou, A. C. (2007). Balancing large assembly lines by a new heuristic based on differential evolution method. The International Journal of Advanced Manufacturing Technology, 34(9–10), 1016–1029. doi:10.1007/s00170-006-0655-7.

    Article  Google Scholar 

  • Nicosia, G., Pacciarelli, D., & Pacifici, A. (2002). Optimally balancing assembly lines with different workstations. Discrete Applied Mathematics, 118(1–2), 99–113. doi:10.1016/S0166-218X(01)00259-1.

    Article  Google Scholar 

  • Niu, S. H., Ong, S. K., & Nee, A. Y. C. (2013). An improved intelligent water drops algorithm for solving multi-objective job shop scheduling. Eng. Appl. Artif. Intell., 26(10), 2431–2442. doi:10.1016/j.engappai.2013.07.011.

    Article  Google Scholar 

  • Oesterle, J., & Amodeo, L. (2014). Efficient multi-objective optimization method for the mixed-model-line assembly line design problem. Procedia CIRP, 17, 82–87. doi:10.1016/j.procir.2014.01.038.

    Article  Google Scholar 

  • Onar, S. Ç., Öztayşi, B., Kahraman, C., Yanık, S., & Şenvar, Ö. (2016). A literature survey on metaheuristics in production systems. In Metaheurisics for production systems, chap. A Literatu (pp. 1–24). Springer International Publishing, Cham. doi:10.1007/978-3-319-23350-5_1.

  • Osaba, E., Yang, X. S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell., 48, 59–71. doi:10.1016/j.engappai.2015.10.006.

    Article  Google Scholar 

  • Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl., 24(7–8), 1659–1669. doi:10.1007/s00521-013-1402-2.

    Article  Google Scholar 

  • Ouaarab, A., Ahiod, B., Yang, X. S., & Abbad, M. (2014). Discrete Cuckoo Search algorithm for job shop scheduling problem. 2014 IEEE international symposium on intelligent control (ISIC) (pp. 1872–1876). doi:10.1109/ISIC.2014.6967636.

  • Pan, Q. K., Fatih Tasgetiren, M., & Liang, Y. (2008). A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers & Operations Research, 35(9), 2807–2839. doi:10.1016/j.cor.2006.12.030.

    Article  Google Scholar 

  • Pan, W., Li, K., Wang, M., Wang, J., & Jiang, B. (2014). Adaptive randomness: A new population initialization method. Mathematical Problems in Engineering, 2014, 1–14. doi:10.1155/2014/975916.

    Article  Google Scholar 

  • Paramasivam, V., & Senthil, V. (2009). Analysis and evaluation of product design through design aspects using digraph and matrix approach. Int. J. Interact. Des. Manuf., 3(1), 13–23. doi:10.1007/s12008-009-0057-9.

    Article  Google Scholar 

  • Pekin, N., & Azizoğlu, M. (2008). Bi criteria flexible assembly line design problem with equipment decisions. Int. J. Prod. Res., 46(22), 6323–6343. doi:10.1080/00207540701441988.

    Article  Google Scholar 

  • Pinto, P. A., Dannenbring, D. G., & Khumawala, B. M. (1981). Branch and bound and heuristic procedures for assembly line balancing with paralleling of stations. Int. J. Prod. Res., 19(5), 565–576. doi:10.1080/00207548108956687.

    Article  Google Scholar 

  • Pinto, P. A., Dannenbring, D. G., & Khumawala, B. M. (1983). Assembly line balancing with processing alternatives: An application. Manage. Sci., 29(7), 817–830. doi:10.1287/mnsc.29.7.817.

    Article  Google Scholar 

  • Polat, O., Kalayci, C. B., Mutlu, Ö., & Gupta, S. M. (2016). A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: An industrial case study. Int. J. Prod. Res., 54(3), 722–741. doi:10.1080/00207543.2015.1055344.

    Article  Google Scholar 

  • Qiu, C., Wang, C., & Zuo, X. (2013). A novel multi-objective particle swarm optimization with K-means based global best selection strategy. International Journal of Computational Intelligence Systems, 6(5), 822–835. doi:10.1080/18756891.2013.805584.

    Article  Google Scholar 

  • Rada-Vilela, J., Chica, M., Cordón, Ó., & Damas, S. (2013). A comparative study of multi-objective ant colony optimization algorithms for the time and space assembly line balancing problem. Appl. Soft Comput., 13(11), 4370–4382. doi:10.1016/j.asoc.2013.06.014.

    Article  Google Scholar 

  • Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2007). A novel population initialization method for accelerating evolutionary algorithms. Computers & Mathematics with Applications, 53(10), 1605–1614. doi:10.1016/j.camwa.2006.07.013.

    Article  Google Scholar 

  • Ribeiro, I., Peças, P., & Henriques, E. (2013). Incorporating tool design into a comprehensive life cycle cost framework using the case of injection molding. J. Clean. Prod., 53, 297–309. doi:10.1016/j.jclepro.2013.04.025.

    Article  Google Scholar 

  • Ritt, M., Costa, A. M., & Miralles, C. (2015). The assembly line worker assignment and balancing problem with stochastic worker availability. Int. J. Prod. Res., 00(00), 1–16. doi:10.1080/00207543.2015.1108534.

    Article  Google Scholar 

  • Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB—A heuristic algorithm for design and balancing of robotic assembly lines. Annals of the CIRP, 42(1), 497–500.

    Article  Google Scholar 

  • Saji, Y., & Essaid, M. (2015). A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput. Appl. doi:10.1007/s00521-015-1978-9.

  • Saji, Y., Riffi, M. E., & Ahiod, B. (2015). Discrete bat-inspired algorithm for travelling salesman problem. In 2014 2nd world conference on complex systems, WCCS 2014 (pp. 28–31). IEEE. doi:10.1109/ICoCS.2014.7060983.

  • Sang, H. Y., & Pan, Q. K. (2013). An effective invasive weed optimization algorithm for the flow shop scheduling with intermediate buffers. In 2013 25th Chinese control and decision conference (CCDC) (pp. 861–864). IEEE. doi:10.1109/CCDC.2013.6561043.

  • Scholl, A., Boysen, N., & Fliedner, M. (2009). Optimally solving the alternative subgraphs assembly line balancing problem. Ann. Oper. Res., 172(1), 243–258. doi:10.1007/s10479-009-0578-4.

    Article  Google Scholar 

  • Shehab, E., & Abdalla, H. S. (2002). An intelligent knowledge-based system for product cost modelling. Int. J. Adv. Manuf. Technol., 19(1), 49–65. doi:10.1007/PL00003967.

    Article  Google Scholar 

  • Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Computers & Industrial Engineering, 47(4), 391–407. doi:10.1016/j.cie.2004.09.001.

    Article  Google Scholar 

  • Ullah, S., Zailin, G., Xianhao, X., Zongdong, H., & Baoxi, W. (2015). Multi objective simultaneous assembly line balancing and buffer sizing. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9(1), 63–70.

    Google Scholar 

  • Ullman, D. (2010). The mechanical design process. New York: McGraw-Hill.

    Google Scholar 

  • Ulungu, E., & Teghem, J. (1995). The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Foundations of Computing and Decision Sciences, 20(2), 149–165.

    Google Scholar 

  • Villalobos-Arias, M., Toscano Pulido, G., & Coello Coello, C. A. (2005). A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005 (pp. 22–29). IEEE. doi:10.1109/SIS.2005.1501598.

  • Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Nicso 2010 (pp. 65–74). doi:10.1007/978-3-642-12538-6_6.

  • Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240–249). Springer.

  • Yang, X. S., & He, X. (2015). Swarm intelligence and evolutionary computation: overview and analysis. In Recent advances in swarm intelligence and evolutionary computation, studies in computational intelligence (pp. 1–23). Springer International Publishing, Cham doi:10.1007/978-3-319-13826-8_1.

  • Yang, X. S., & Deb, S. (2009). Cuckoo Search via Levy flights. In 2009 world congress on nature and biologically inspired computing (NaBIC) (pp. 210–214). IEEE. doi:10.1109/NABIC.2009.5393690.

  • Yu, J., & Yin, Y. (2010). Assembly line balancing based on an adaptive genetic algorithm. The International Journal of Advanced Manufacturing Technology, 48(1–4), 347–354. doi:10.1007/s00170-009-2281-7.

    Article  Google Scholar 

  • Zhai, L. Y., Khoo, L. P., & Zhong, Z. W. (2009). Design concept evaluation in product development using rough sets and grey relation analysis. Expert Syst. Appl., 36(3 PART 2), 7072–7079. doi:10.1016/j.eswa.2008.08.068.

    Article  Google Scholar 

  • Zhang, J., Wang, W., & Xu, X. (2015). A hybrid discrete particle swarm optimization for dual-resource constrained job shop scheduling with resource flexibility. J. Intell. Manuf. doi:10.1007/s10845-015-1082-0.

  • Zhang, W., & Gen, M. (2011). An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. J. Intell. Manuf., 22(3), 367–378. doi:10.1007/s10845-009-0295-5.

    Article  Google Scholar 

  • Zhong, Y. B., Xiang, Y., & Liu, H. L. (2014). A multi-objective artificial bee colony algorithm based on division of the searching space. Applied Intelligence, 41(4), 987–1011. doi:10.1007/s10489-014-0555-8.

    Article  Google Scholar 

  • Zhou, L., Li, J., Li, F., Meng, Q., Li, J., & Xu, X. (2016). Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J. Clean. Prod., 112(April 2016), 3721–3734. doi:10.1016/j.jclepro.2015.05.093.

    Article  Google Scholar 

  • Zhou, Y., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285–292. doi:10.1016/j.neucom.2013.05.063.

    Article  Google Scholar 

  • Zhou, Y., Luo, Q., Chen, H., He, A., & Wu, J. (2015). A discrete invasive weed optimization algorithm for solving traveling salesman problem. Neurocomputing, 151(P3), 1227–1236. doi:10.1016/j.neucom.2014.01.078.

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput., 3(4), 257–271. doi:10.1109/4235.797969.

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput., 7(2), 117–132. doi:10.1109/TEVC.2003.810758.

    Article  Google Scholar 

  • Zou, X., Chen, Y., Liu, M., & Kang, L. (2008). A new evolutionary algorithm for solving many-objective optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 98(5), 1402–1412. doi:10.1109/TSMCB.2008.926329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Oesterle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oesterle, J., Amodeo, L. & Yalaoui, F. A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives. J Intell Manuf 30, 1021–1046 (2019). https://doi.org/10.1007/s10845-017-1298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1298-2

Keywords

Navigation