Skip to main content
Log in

An integration model for generating and selecting product configuration plans

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the developed market, time-to-market and market shares require companies to provide products that satisfy customer requirements in a timely manner, and the variety in product configurations has been analyzed thoroughly. Against this background, this study addresses an integration model for generating feasible configuration plans based on market transaction data and for selecting the optimal configuration plan(s) based on customer requirements. Transaction data can be used for clustering products to analyze the characteristics of segmented markets and yield the probabilities of configuration plans; along with the constraint conditions, feasible configuration plans can be generated, as well as market strategies for different segmented markets. In addition, a probabilistic classifier, the Naïve Bayes Classifier, is applied to map the customer requirements to the configuration plan with the highest probability. The classifier is suitable for handling imprecise and uncertain information, such as product requirements expressed by customers. A case study of a mouse device is illustrated, and the results indicate the integration model can achieve a good performance in terms of time advantages in project design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agard, B., & Kusiak, A. (2007). Data-mining-based methodology for the design of product families. International Journal of Production Research, 42(15), 2955–2969.

    Google Scholar 

  • Andrews, R. L., Brusco, M. J., & Currim, I. S. (2010). Amalgamation of partitions from multiple segmentation bases: A comparison of non-model-based and model-based methods. European Journal of Operational Research, 201(2), 608–618.

    Google Scholar 

  • Bijmolt, T. H., Paas, L. J., & Vermunt, J. K. (2004). Country and consumer segmentation: Multi-level latent class analysis of financial product ownership. International Journal of Research in Marketing, 21(4), 323–340.

    Google Scholar 

  • Bruseberg, A., & Mcdonagh-Philp, D. (2002). Focus groups to support the industrial/product designer: a review based on current literature and designers’ feedback. Applied Ergonomics, 33(1), 27–38.

    Google Scholar 

  • Carnevalli, J. A., & Miguel, P. C. (2008). Review, analysis and classification of the literature on QFD-types of research, difficulties and benefits. International Journal of Production Economics, 114(2), 737–754.

    Google Scholar 

  • Carulli, M., Bordegoni, M., & Cugini, U. (2013). An approach for capturing the voice of the customer based on virtual prototyping. Journal of Intelligent Manufacturing, 24(5), 887–903.

    Google Scholar 

  • Chen, S., Wang, Y., & Tseng, M. M. (2009). Mass customisation as a collaborative engineering effort. International Journal of Collaborative Engineering, 1(1–2), 152–167.

    Google Scholar 

  • Chen, Y., Fung, R. Y. K., & Tang, J. (2005). Fuzzy expected value modelling approach for determining target values of engineering characteristics in QFD. International Journal of Production Research, 43(17), 3583–3604.

    Google Scholar 

  • Dahlin, J., Halbherr, V., Kurz, P., Nelles, M., & Herbes, C. (2016). Marketing Green Fertilizers: Insights into Consumer Preferences. Sustainability, 8(11), 1169.

    Google Scholar 

  • De Oña, J., López, G., Mujalli, R., & Calvo, F. J. (2013). Analysis of traffic accidents on rural highways using latent class clustering and Bayesian networks. Accident Analysis and Prevention, 51, 1–10.

    Google Scholar 

  • Domingos, P., & Pazzani, M. (1998). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2–3), 103–130.

    Google Scholar 

  • Dziak, J. J., Coffman, D. L., Lanza, S. T., & Li, R. (2012). Sensitivity and specificity of information criteria (report no. #12-119). University Park, PA: The Methodology Center, The Pennsylvania State University.

  • Gattorna, J. (2010). Dynamic supply chains: Delivering value through people (2nd ed.). Harlow, FT: Prentice Hall.

    Google Scholar 

  • Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2003). Product modularity: Definitions and benefits. Journal of Engineering Design, 14(3), 295–313.

    Google Scholar 

  • Goswami, M., & Tiwari, M. K. (2015). Product feature and functionality driven integrated framework for product commercialization in presence of qualitative consumer reviews. International Journal of Production Research, 53(16), 4769–4788.

    Google Scholar 

  • Green, P. E., & Srinivasan, V. (1990). Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54(4), 3–19.

    Google Scholar 

  • Green, P. E., Krieger, A. M., & Wind, Y. (2001). Thirty years of conjoint analysis: Reflections and prospects. Interfaces, 31(3), 94–99.

    Google Scholar 

  • Greenbaum, T. (2000). Moderating focus groups. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Harding, J. (2013). Qualitative data analysis from start to finish. London: Sage.

    Google Scholar 

  • Hjort, K., Lantz, B., Ericsson, D., & Gattorna, J. (2013). Customer segmentation based on buying and returning behaviour. International Journal of Physical Distribution and Logistics Management, 43(10), 852–865.

    Google Scholar 

  • Hsieh, M. H., Tsai, K. H., & Hultink, E. J. (2006). The relationships between resource configurations and launch strategies in taiwan’s ic design industry: An exploratory study. Journal of Product Innovation Management, 23(3), 259–273.

    Google Scholar 

  • Jenkins, O. C., & Matarić, M. J. (2002). Deriving action and behavior primitives from human motion data. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2551–2556).

  • Jeon, G., & Leep, H. R. (2006). Forming part families by using genetic algorithm and designing machine cells under demand changes. Computers and Operations Research, 33(1), 263–283.

    Google Scholar 

  • Jiao, J., & Zhang, Y. (2005). Product portfolio identification based on association rule mining. Computer-Aided Design, 37(2), 149–172.

    Google Scholar 

  • Jiao, J., Zhang, Y., & Wang, Y. (2007). A generic genetic algorithm for product family design. Journal of Intelligent Manufacturing, 18(2), 233–247.

    Google Scholar 

  • Jin, J., Liu, Y., Ji, P., & Liu, H. (2016). Understanding big consumer opinion data for market-driven product design. International Journal of Production Research, 54(10), 3019–3041.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    Google Scholar 

  • Kahraman, C., Ertay, T., & Büyüközkan, G. (2006). A fuzzy optimization model for QFD planning process using analytic network approach. European Journal of Operational Research, 171(2), 390–411.

    Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

    Google Scholar 

  • Kangale, A., Kumar, S. K., Naeem, M. A., Williams, M., & Tiwari, M. K. (2016). Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary. International Journal of Systems Science, 47(13), 3272–3286.

    Google Scholar 

  • Keogh, E., & Mueen, A. (2011). Curse of dimensionality. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 257–258). New York: Springer.

    Google Scholar 

  • Kotler, P. T., & Armstrong, G. (2015). Principles of marketing (16th ed.). New York: Pearson Education.

    Google Scholar 

  • Kristianto, Y., Helo, P., & Jiao, R. J. (2013). Mass customization design of engineer-to-order products using Benders’ decomposition and bi-level stochastic programming. Journal of Intelligent Manufacturing, 24(5), 961–975.

    Google Scholar 

  • Kusiak, A., Smith, M. R., & Song, Z. (2007). Planning product configurations based on sales data. IEEE Transactions on Systems Man and Cybernetics, Part C: Applications and Reviews, 37(4), 602–609.

    Google Scholar 

  • Kwong, C. K., Chen, Y., Bai, H., & Chan, D. S. K. (2007). A methodology of determining aggregated importance of engineering characteristics in QFD. Computers and Industrial Engineering, 53(4), 667–679.

    Google Scholar 

  • Lee, A. H. I., & Lin, C. Y. (2011). An integrated fuzzy QFD framework for new product development. Flexible Services and Manufacturing Journal, 23(1), 26–47.

    Google Scholar 

  • Lei, N., & Moon, S. K. (2015). A decision support system for market-driven product positioning and design. Decision Support Systems, 69, 82–91.

    Google Scholar 

  • Li, H., & Azarm, S. (2002). An approach for product line design selection under uncertainty and competition. Journal of Mechanical Design, 124(3), 385–392.

    Google Scholar 

  • Lim, I. S., Ciechomski, P. D. H., Sarni, S., & Thalmann, D. (2003). Planar arrangement of high-dimensional biomedical data sets by isomap coordinates. In Proceedings of the IEEE symposium on computer-based medical systems (Vol. 16, pp. 50–55).

  • Lin, K. Y., Chien, C. F., & Kerh, R. (2016). Unison framework of data-driven innovation for extracting user experience of product design of wearable devices. Computers and Industrial Engineering, 99, 487–502.

    Google Scholar 

  • Lockshin, L., & Cohen, E. (2011). Using product and retail choice attributes for cross-national segmentation. European Journal of Marketing, 45(7–8), 1236–1252.

    Google Scholar 

  • Lu, W., & Petiot, J. F. (2014). Affective design of products using an audio-based protocol: Application to eyeglass frame. International Journal of Industrial Ergonomics, 44(3), 383–394.

    Google Scholar 

  • McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Google Scholar 

  • Moon, S. K., & McAdams, D. A. (2012). A market-based design strategy for a universal product family. Journal of Mechanical Design, 134(11), 111007.

    Google Scholar 

  • Nath, P. D., Das, S. K., Islam, F. N., Tahmid, K., Shanto, R. A., & Rahman, R. M. (2017). Classification of product rating using data mining techniques. In D. Król, N. T. Nguyen, & K. Shirai (Eds.), Advanced topics in intelligent information and database systems (pp. 27–36). Basel: Springer.

    Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569.

    Google Scholar 

  • Özgür, A., Özgür, L., & Güngör, T. (2005). Text categorization with class-based and corpus-based keyword selection. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan (Eds.), Computer and information sciences-ISCIS 2005 (pp. 606–615). Berlin: Springer.

    Google Scholar 

  • Pullman, M. E., Moore, W. L., & Wardell, D. G. (2002). A comparison of quality function deployment and conjoint analysis in new product design. Journal of Product Innovation Management, 19(5), 354–364.

    Google Scholar 

  • Ringnér, M. (2008). What is principle component analysis? Nature Biotechnology, 26(3), 303–304.

    Google Scholar 

  • Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

  • Sabin, D., & Weigel, R. (1998). Product configuration frameworks: A survey. IEEE Intelligent Systems and Their Applications, 13(4), 42–49.

    Google Scholar 

  • Scavarda, L. F., Reichhart, A., Hamacher, S., & Holweg, M. (2010). Managing product variety in emerging markets. International Journal of Operations and Production Management, 30(2), 205–224(20).

    Google Scholar 

  • Schwartz, B., & Kliban, K. (2005). The paradox of choice: Why more is less. New York: ECCO.

    Google Scholar 

  • Shao, X. Y., Wang, Z. H., Li, P. G., & Feng, C. X. J. (2006). Integrating data mining and rough set for customer group-based discovery of product configuration rules. International Journal of Production Research, 44(14), 2789–2811.

    Google Scholar 

  • van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review (report no. TiCC-TR 2009-005). Tilburg: Tilburg Centre for Creative Computing, Tilburg University.

  • Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars & A.-L. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wang, Y., & Tseng, M. M. (2011). Integrating comprehensive customer requirements into product design. CIRP Annals-Manufacturing Technology, 60(1), 175–178.

    Google Scholar 

  • Wang, Y., & Tseng, M. M. (2015). A Naïve Bayes approach to map customer requirements to product variants. Journal of Intelligent Manufacturing, 26(3), 501–509.

    Google Scholar 

  • Wasserman, G. S. (1993). On how to prioritize design requirements during the QFD process. IIE Transactions, 25(3), 59–65.

    Google Scholar 

  • Weng, S. S., & Liu, M. J. (2004). Feature-based recommendations for one-to-one marketing. Expert Systems with Applications, 26(4), 493–508.

    Google Scholar 

  • Wielinga, B., & Schreiber, G. (1997). Configuration-design problem solving. IEEE Expert: Intelligent Systems and Their Applications, 12(2), 49–56.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (71571023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Yang, Y. & Zhang, H. An integration model for generating and selecting product configuration plans. J Intell Manuf 30, 1291–1302 (2019). https://doi.org/10.1007/s10845-017-1324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1324-4

Keywords

Navigation