Skip to main content

Advertisement

Log in

A data-driven method based on deep belief networks for backlash error prediction in machining centers

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Backlash error occurs in a machining center may lead to a series of changes in the geometry of the components and subsequently deteriorate the overall performance of the equipment. Due to the uncertainty of mechanical wear between kinematic pairs, it is challenging to predict backlash error through physical models directly. An alternative method is to leverage data-driven models to map the degradation. This paper proposes a data-driven method for backlash error predication through Deep Belief Network (DBN). The proposed method focuses on the assessment of both current and future geometric errors for backlash error prediction and subsequent maintenance in machining centers. During the process of prognosis, a DBN via stacking Restricted Boltzmann Machines is constructed for backlash error prediction. Energy-based models enable DBN to mine information hidden behind highly coupled inputs, which makes DBN a feasible method for fault diagnosis and prognosis when the target condition is beyond the historical data. In the experiment, to confirm the effectiveness of deep learning for backlash error prediction, similar popular regression methods, including Support Vector Machine Regression and Back Propagation Neural Network, are employed to present a comprehensive comparison in both diagnosis and prognosis. The experimental results show that the performances of all these regression methods are acceptable in the diagnostic stage. In the prognostic stage, DBN demonstrates its superiority and significantly outperforms the other models for backlash error prediction in machining centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aydın, İ., Karaköse, M., & Akın, E. (2015). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing, 26(4), 717–729.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127.

    Article  Google Scholar 

  • Carreira-Perpinan, M. A., & Hinton, G. (2005). On contrastive divergence learning. In AISTATS (Vol. 10, pp. 33–40). Citeseer

  • Chen, C., Liu, Z., Zhang, Y., Chen, C. P., & Xie, S. (2016). Actuator backlash compensation and accurate parameter estimation for active vibration isolation system. IEEE Transactions on Industrial Electronics, 63(3), 1643–1654.

    Article  Google Scholar 

  • Cheng, Q., Zhao, H., Zhang, G., Gu, P., & Cai, L. (2014). An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 75(1–4), 107–121.

    Article  Google Scholar 

  • Cheng, Q., Zhao, H., Zhao, Y., Sun, B., & Gu, P. (2015). Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1101-1.

  • Ciodaro, T., Deva, D., De Seixas, J., & Damazio, D. (2012). Online particle detection with neural networks based on topological calorimetry information. In Journal of physics: Conference series (Vol. 368, pp. 012030). IOP Publishing

  • Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039.

    Article  Google Scholar 

  • Er, M. J., Zhang, Y., Wang, N., & Pratama, M. (2016). Attention pooling-based convolutional neural network for sentence modelling. Information Sciences, 373, 388–403.

    Article  Google Scholar 

  • Fines, J. M., & Agah, A. (2008). Machine tool positioning error compensation using artificial neural networks. Engineering Applications of Artificial Intelligence, 21(7), 1013–1026.

    Article  Google Scholar 

  • Gan, M., & Wang, C. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, 72, 92–104.

    Article  Google Scholar 

  • Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168–174.

    Article  Google Scholar 

  • Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for Industrie 4.0 scenarios: A literature review. Dortmund: Technische Universität Dortmund.

    Google Scholar 

  • Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926.

    Google Scholar 

  • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.

    Article  Google Scholar 

  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

    Article  Google Scholar 

  • Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Article  Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  Google Scholar 

  • Kao, J., Yeh, Z.-M., Tarng, Y., & Lin, Y. (1996). A study of backlash on the motion accuracy of CNC lathes. International Journal of Machine Tools and Manufacture, 36(5), 539–550.

    Article  Google Scholar 

  • Keyvanrad, M. A., & Homayounpour, M. M. (2014). A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet V2. 1). arXiv preprint arXiv:1408.3264.

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Paper presented at the proceedings of the 25th international conference on neural information processing systems (Vol. 1). Lake Tahoe, Nevada.

  • Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Lee, K.-I., & Yang, S.-H. (2013). Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. International Journal of Machine Tools and Manufacture, 70, 45–52.

    Article  Google Scholar 

  • Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 81(1–4), 667–684.

    Article  Google Scholar 

  • Liu, H., Xue, X., & Tan, G. (2010). Backlash error measurement and compensation on the vertical machining center. Engineering, 2(06), 403.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), 1037–1048.

    Article  Google Scholar 

  • O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., & Pfeiffer, M. (2013). Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in Neuroscience, 7, 178. https://doi.org/10.3389/fnins.2013.00178.

  • Prasanga, D. K., Tanida, K., Mizoguchi, T., & Ohnishi, K. (2013). Evaluation of a backlash compensation method using two parallel thrust wires. In IEEE international symposium on industrial electronics (ISIE) (pp. 1–6). IEEE

  • Ribeiro, B., Gonçalves, I., Santos, S., & Kovacec, A. (2011). Deep learning networks for off-line handwritten signature recognition. In C. San Martin & S.-W. Kim (Eds.), Proceedings of progress in pattern recognition, image analysis, computer vision, and applications: 16th Iberoamerican Congress, CIARP 2011, Pucón, Chile, November 15–18, 2011 (pp. 523–532). Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Sainath, T. N., Mohamed, A.-R., Kingsbury, B., & Ramabhadran, B. (2013). Deep convolutional neural networks for LVCSR. In 2013 IEEE International conference on acoustics, speech and signal processing (pp. 8614–8618). IEEE

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Article  Google Scholar 

  • Schwenke, H., Knapp, W., Haitjema, H., Weckenmann, A., Schmitt, R., & Delbressine, F. (2008). Geometric error measurement and compensation of machines: An update. CIRP Annals-Manufacturing Technology, 57(2), 660–675.

    Article  Google Scholar 

  • Seltzer, M. L., Yu, D., & Wang, Y. (2013 ). An investigation of deep neural networks for noise robust speech recognition. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 7398–7402). IEEE

  • Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499–510.

    Article  Google Scholar 

  • Slamani, M., Nubiola, A., & Bonev, I. A. (2012). Modeling and assessment of the backlash error of an industrial robot. Robotica, 30(07), 1167–1175.

    Article  Google Scholar 

  • Stryczek, R. (2016). A metaheuristic for fast machining error compensation. Journal of Intelligent Manufacturing, 27(6), 1209–1220.

  • Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2017). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-017-0233-1.

  • Tompson, J., Jain, A., LeCun, Y., & Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In Paper presented at the proceedings of the 27th international conference on neural information processing systems (Vol. 1). Montreal, Canada.

  • Wang, C., & Jiang, P. (2017). Deep neural networks based order completion time prediction by using real-time job shop RFID data. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1325-3.

  • Wang, K.-S., Li, Z., Braaten, J., & Yu, Q. (2015). Interpretation and compensation of backlash error data in machine centers for intelligent predictive maintenance using ANNs. Advances in Manufacturing, 3(2), 97–104.

    Article  Google Scholar 

  • Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., et al. (2015). The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), 1254806.

    Article  Google Scholar 

  • Yu, D., & Deng, L. (2011). Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Processing Magazine, 28(1), 145–154.

    Article  Google Scholar 

  • Zhang, Y., Er, M. J., Zhao, R., & Pratama, M. (2017). Multiview convolutional neural networks for multidocument extractive summarization. IEEE Transactions on Cybernetics, 47(10), 3230–3242.

    Article  Google Scholar 

  • Zhang, Y., Yang, J., & Zhang, K. (2013). Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar. The International Journal of Advanced Manufacturing Technology, 65(1–4), 275–281.

    Article  Google Scholar 

  • Zhong, G., Wang, C., Yang, S., Zheng, E., & Ge, Y. (2015). Position geometric error modeling, identification and compensation for large 5-axis machining center prototype. International Journal of Machine Tools and Manufacture, 89, 142–150.

    Article  Google Scholar 

  • Zhou, S., Chen, Q., & Wang, X. (2010). Discriminative Deep Belief networks for image classification. In 2010 IEEE international conference on image processing (pp. 1561–1564). IEEE

  • Zhu, S., Ding, G., Qin, S., Lei, J., Zhuang, L., & Yan, K. (2012). Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools and Manufacture, 52(1), 24–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y. & Wang, K. A data-driven method based on deep belief networks for backlash error prediction in machining centers. J Intell Manuf 31, 1693–1705 (2020). https://doi.org/10.1007/s10845-017-1380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1380-9

Keywords

Navigation