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Abstract
In electronics manufacturing, the required quality of electronic modules (e.g. packaged electronic devices) are evaluated
through qualification testing using standards and user-defined requirements. The challenge for the electronics industry is
that product qualification testing is time-consuming and costly. This paper focuses on the development and demonstration
of a novel approach for smarter qualification using test data from the production line along with integrated computational
techniques for data mining/analytics and data-driven forecasting (i.e. prognostics) modelling. The most common type of
testing in the electronics industry—sequentially run electrical multi-parameter tests on the Device-under-Test (DUT), is
considered. The proposed data mining (DM) framework can identify the tests that have strong correlation to pending failure
of the device in the qualification (tests sensitive to pending failure) as well as to evaluate the similarity in test measurements,
thus generating knowledge on potentially redundant tests. Mining the data in this context and with the proposed approach
represents a major new contribution because it uncovers embedded knowledge and information in the production test data
that can enable intelligent optimisation of the tests’ sequence and reduce the number of tests. The intelligent manufacturing
concept behind the development of data-driven prognostics models using machine learning techniques is to use data only from
a small number of tests from the full qualification specification as training data in the process of model construction. This
model can then forecast the overall qualification outcome for a DUT—Pass or Fail—without performing all other remaining
tests. The novelty in the context of machine learning is in the selection of the data features for the training dataset using results
from tests sensitive to pending failure. Support Vector Machine (SVM) binary classifiers SVM models built with data from
tests sensitive to the outcome that the module will fail are shown to have superior performance compared with models trained
with other datasets of tests. Case studies based on the use of real industrial production test data for an electronic module are
included in the paper to demonstrate and validate the computational approach. This work is both novel and original because
at present, to the best knowledge of the authors, such predictive analytics methodology applied to qualification testing and
providing benefits of test time and hence cost reduction are non-existent in the electronics industry. The integrated data
analytics-prognostics approach, deployable for both off-line and in-line optimisation of production test procedures, has the
potential to transform current practices by exploiting in a smarter way information and knowledge available with large datasets
of qualification test data.
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Introduction

The global market for electronic products is projected to
reach US$2.4 trillion per year by 2020 (Pecht et al. 2016).
This growth has led to intense competition between manu-
facturers to minimise the time-to-market and cost of their
products while at the same time delivering high qual-
ity and reliable products to their customer. Assuring the
robust functional performance and quality of manufactured
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electronics products, and respective “fit-for-purpose” char-
acteristics, requires the adoption of qualification processes,
along with reliability testing, that often are time-consuming
and resource-intensive (Ruidong and Chun 2017). A major
challenge from economics point of view is the ability to
reduce time-to-market for an electronic module that satis-
fies customer requirements in terms of quality and reliability.
Identifying solutions of how to overcome this challenge is a
high priority for electronics manufacturers.

Qualification, being part of the production line of a
product, is an application-specific process. In general, manu-
facturers develop qualification specifications for electronics
products based on respective application requirements, as
defined by the customer, and industrial standards. Tests
(Qualification and Environmental) are used to determine
whether the product meets the specified requirements in
terms of quality and reliability before it is delivered to the
customer (Wang et al. 2008; Vichare et al. 2006).

Qualification tests of electronics products are conducted
typically throughmeasurements of various electrical parame-
ters that are indicators of the functional state of the individual
electronic component or product. A qualification test out-
come is typically binary and defined as either PASS or FAIL
based on the measured test values and associated specified
test limits. A test value within the expected test range is asso-
ciated with pass status and indicates that the required quality
is present. It is a common practice in the electronics industry
to archive qualification test measurements, for example to
ensure traceability information is available, and as a result
manufacturing enterprises often have access to large histor-
ical sets of test data for their products. This data often stays
unused but can potentially hold valuable information and
knowledge that can enable the optimisation of the test pro-
cedures required for the respective product manufacturing
line.

Data mining (DM) and machine learning (ML) offer a
powerful approach to problems inmanufacturing that require
extracting information and decision making by means of
data analytics and predictive modelling. However, current
use of computational intelligence and data for enabling smart
manufacturing solutions remains limited in many industrial
applications. In recent years, as result of the increasing use,
adoption and advances in Internet of Things (IoT) and Infor-
mation and Communications Technology (ICT), this has
started to change. IoT and ICT provide huge opportunities
for the paradigm of Industry 4.0 and smart manufacturing.
Production data from diverse sources and in various formats
are gathered and stored in increased volumes, and is rapidly
turning into one of the main pillars of smart manufactur-
ing (Kusiak 2018). This data can be used to develop and
imbed intelligence and smartness in manufacturing. Being
in possession of large databases gathered from their produc-
tion floors and machinery, more and more manufacturing

enterprises are starting to recognise the importance of adopt-
ing data mining (DM) approaches in order to increase their
own competitive advantage by exploiting the information and
knowledge imbedded within manufacturing datasets (Wang
2007). However, generating knowledge from large datasets
and the analytical tools required to do that remains a key
challenge.

Data mining for monitoring and improving the quality
of high-tech manufacturing has gained attention in the past
years and has been researched increasingly with respect to
a range of challenges that datasets and applications pose.
New intelligent data analytics methodologies that can enable
the automation of the information and knowledge extrac-
tion are required to deal with large complex datasets with
records and features gathered on modern production lines
(Choudhary et al. 2009). Looking at the nature and impli-
cations for applying data mining in manufacturing, Wang
points at several factors that have major influence on the suc-
cess for the adoption of data mining (Wang 2007). Among
these, availability of appropriate datasets, data cleaning and
pre-processing, selection of suitable features for the knowl-
edge to be solved, and machine learning model capability to
identify correlation relationship in the data are specified as
being very important.

Published research provides some interesting examples of
datamining andmachine learning applications for intelligent
manufacturing covering problems related to quality control,
scheduling, fault diagnosis, defect analysis, decision support
systems, etc. as well as the development of DM approaches
and algorithms (Braha 2013). Research byChien et al. (2014)
focused on the integration of design of experiments with
data mining for knowledge extraction that supports accurate
characterisation of the yield performance of newly released
wafer fabrication technologies as well as diagnosis in the
instance of large datasets automatically collected in semicon-
ductor manufacturing.Wuest et al. (2014) proposed a quality
control approach based on machine learning techniques and
clustering analysis for modern manufacturing programmes
that generate product state data with increasing complexity
and high-dimensionality of the features. Rokach and Mai-
mon (2006) have developed a feature set decomposition
methodology for applications concerning quality improve-
ment through classifications models. An interesting research
question tackled in their work is the handling of data in cases
when the training set size of the data is small relative to the
number of the features. There has also been research on the
adoption of manufacturing equipment data for building pre-
dictive models for conditionmonitoring and prognostics. For
example, Benkedjouh et al. (2015) utilised methods for non-
linear feature reduction and support vector regression using
data on monitored signals from high precision cutting tools
to assess their wear evolution/degradation and to predict the
tool remaining useful life (RUL).
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Da Cunha et al. (2006) detail an interesting application of
data-mining approach using production data for the reduction
of the risk of producing faulty products by identifying an opti-
mal sequencing of assembly tasks. More recently, Godreau
et al. (2018) demonstrated a new data mining method using
unsupervised learning for the classification of equipment
critical events and their aggregation. The authors have also
researched the potentials of contextual clustering for a better
data selection.

Applications of data mining andmachine learning in elec-
tronics manufacturing domain become more common and
increasingly important as companies recognise that such
smart expert systems and imbedded data-driven intelligence
can provide competitive advantages in a global economy.
Published research has addressed manufacturing challenges
related to fabrication, yield optimisation, and automated
fault/defect detection (Stoyanov et al. 2016; Park et al. 2013;
Sohn and Lee 2012; Kupp andMakris 2012; Kim et al. 2012,
2015; Chou et al. 1997; Boubezoul et al. 2007).

The research reported in this paper aims at the formula-
tion, demonstration, and validation of a data mining/machine
learning methodology for smart qualification testing of elec-
tronic products. The type of qualification specs targeted with
this work is the common electrical parameter testing where
hundreds of individual tests are executed sequentially, one
after the other. The proposed data analytics-based modelling
methodology can provide insights into the role and signifi-
cance of individual tests and their sensitivity to being reliable
precursors of pending failure of the qualification process.
The novelty and contribution is in the data mining approach
underpinned by data distributionmodelling and the proposed
similarity assessment method for qualification tests, identi-
fying sensitive to pending failure tests from the full set of
qualification tests, and then use this data to developmore effi-
cient and accurate predictive models through the selection of
a smarter training dataset. Uncovering this knowledge from
the data results in the following two opportunities/objectives:
(1) Optimise the production test specification for electron-
ics DUTs, and (2) Develop an intelligent manufacturing
capability for qualification testing through in-line imbed-
ded, model-based, prognostics. The qualification process can
be optimised by identifying favourable sequencing of the
individual tests and if there are any potentially redundant
tests that are not required. Also, test time reduction can be
achieved by the proposed in-line adoption of data-driven,
machine learning prognostics models that can provide, with
a degree of accuracy, predictions for the expected overall
qualification outcome (Pass or Fail) for a DUT without exe-
cuting all tests in the qualification spec.

The computational approach and the associated methods
used to mine the data and to develop the ML prognostics
model in relation to the two objectives above are demon-

strated and validated using real production test data gathered
on the qualification of an electronic module.

Opportunities with historical qualification
data

The type of qualification testing considered in this work
requires undertaking a sequential series of electrical param-
eter measurements on the electronic device. In a sequence of
individual tests, for the device to be qualified, it is required
that all individual tests constituting the qualification specifi-
cation are passed. The measured test value has to be within a
predefined range in order for that test to be passed; otherwise,
the DUT fails the specific test, and respectively the whole
qualification. When a DUT fails a test in the test sequence,
continued testing of that device is stopped.

Many qualification procedures of this type require a large
number of electrical, logical and other functional parameter
measurements, which for complex electronic parts can easily
require individual tests in the order of hundreds. Hence, the
overall qualification of a single electronic part can easily
become time consuming given the need to perform electrical
probing for such a large number of parameters.

Given the sequential approach for executing the individ-
ual tests, a potential way to shorten the overall qualification
time is by taking advantage of the fact that as the testing pro-
gresses, more and more data of completed individual tests
becomes available. Mining and analysing this data, and fore-
casting the overall qualification outcome with prognostics
models is an appealing prospect that can enable reducing
the required number of tests (e.g. through redundant tests
identification and/or optimal tests sequencing) and hence
time-to-market and cost. In essence, there is a clear opportu-
nity to build machine learning models using past historical
data on qualified electronic devices, and then embed themod-
els in the qualification process for in-line use to forecast the
qualification outcome.

The remaining sections of the paper detail the data-driven
modelling methodology for smart qualification testing that is
proposed, developed and demonstrated using real qualifica-
tion test datasets for an electronic module.

Methodology and computational approach

The proposedmethodology is developed to take advantage of
the availability of large historical qualification test datasets
thatmanymanufacturers in the electronics industry have gen-
erated and archived over long periods of time but have not
exploited yet to achieve more intelligent production lines.
The developed computational approach is capable of sup-
porting smarter testing through optimisation of qualification
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Fig. 1 Approach to smart
qualification test of electronic
products

test specifications using the knowledge obtained through data
mining and data analytics of the test data, and by construct-
ing and applying data driven prognostics models to forecast
expected qualification outcome for the tested device. The
big picture of the smart-test strategy is detailed in Fig. 1.
Results from failure statistics and similarity test evaluation
can be derived offline by accessing historical datasets. This
information can then be used for qualification optimisation:
suggesting a different order of test execution and identifying
what might be the potentially redundant tests. The other key
opportunity with offline mining and analytics of the test data
is the generation of prognostic models which can be used
to forecast the output of subsequent tests. The approach is
to base this on test measurements from a small number of
individual tests completed on a DUT, and predict the over-
all final qualification status without executing the remaining
tests beyond the point of the current test at which the model-
based forecast is made.

The developed numerical modelling approach is based
on integrated techniques for statistical analysis of failure
test data, distribution-based data modelling, and data min-
ing/analytics for identification of (1) potentially redundant
tests and (2) tests sensitive to pending failure. Machine
learning based modelling for in-line qualification outcome
prognostics that takes advantage from the identified tests
sensitive to pending failure is also incorporated within the
computational framework.

Figure 2 illustrates our concept of bringing information
from data mining, particularly on identified so-called “sensi-
tive to pending failure” tests, to support the adoption of more
efficient and accurate machine learning prognostic models
within the qualification process execution. As detailed in
Fig. 2, we first perform a set of data pre-processing tasks
on the raw test data recorded: cleaning, formatting, and nor-
malisation of the data. This is undertaken before the data

is subjected to data mining and analytics. Combined distri-
bution and similarity modelling, along with failure statistics,
are used to generate knowledge on how the qualification pro-
cess can be optimised. Identification of potentially redundant
tests from similarities in PASS data distributions with zero
failure statistic can enable test time reduction of the overall
qualification process for DUTs by removing those tests for
the qualification specification.

Performing similarity analysis, but this time on data for
a given test gathered separately on PASS and FAIL devices,
identifies tests that are sensitive to pending failure. This is
regarded as the most novel aspect of the proposed compu-
tational approach in the context of designing the training
datasets required for the machine learning classification
model developments. Training data that includes tests sen-
sitive to pending failure will improve the accuracy of the
constructed ML models while simplifying their complexity
(i.e. less model input information). Predictive models for
the final PASS or FAIL qualification outcome can then be
developed from the test data available at any given test in
the sequence, and used at that point to forecast if the DUT
will be successfully qualified. Decision to stop or continue
the sequence of tests can then be taken in the context of the
knownmodel accuracy aswell as the application requirement
for yield.

To facilitate the understating of the proposedmethodology
and algorithmic framework, a detailed block diagram of the
computational steps required with our approach is produced.
This diagram is detailed in Fig. 3. The building blocks for
this approach require performing the following main steps:

Step 1 Obtain dataset Access historical qualification test
database for a given electronic device and applica-
tion. The type of qualification is the most common
for the electronics industry multiple parameter elec-
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Fig. 2 Integration of the developed data analytics approach for optimisation of qualification testing of electronic devices with Machine Learning
(ML) prognostics models for forsaking qualification outcomes for DUTs

trical/functional test measurements. We adopt the
abbreviation DUT (Device-under-Test) for the elec-
tronic device of interest.

Step 2 Cleaning and pre-processing Cleaning and pre-
processing of the raw. At this step, the raw data (test
device records Nr , and number of individual tests
in the sequence is dr) needs to be transformed into
clean data that is suitable for data mining and ana-
lytics. Complete data fields such as those that may
hold textual test related information or symbols act-
ing as labels for certain test attributes, for example
a * symbol marking a test measurement outside the
test limits, etc., are removed in the produced clean
dataset. Cleaned data must be numeric only; thus,
only tests with outcomes that can be transformed
into numerical results are processed. PASS and FAIL
status are coded as − 1 and 1 respectively. Tabular
structure for the cleaned data is adopted: (1) each
row contains the numerical test data for one device
and (2) each column corresponds to a test that is per-
formed. Hence, a field (cell) in this tabular structure,
for example implemented in CSV or Excel file for-
mat, holds the measurement for a given device under
given test. The columns, from left to right, follow the
same order as the sequence of the test in the actual

procedure. If a device has passed the qualification, all
individual tests have bene passed and measurements
for all test values are included (a complete set of data
in all cell in tabular row for that device). If a DUT
has failed, then test measurements in the row for that
device appear in the cells up and including the col-
umn for the test underwhich the failure has occurred,
with all remaining cells in that row on the right of the
failure test column being empty. This reflects on how
such qualification tests are most commonly under-
taken by the industry. Once a device fails a test in
the sequence, testing of the device is terminated and
none of the remaining tests is performed.
In practice, a device that has failed the qualification
may be re-tested one or more times (for example
if the DUT has not be seated properly on the test
bench). If multiple records for the same device are
stored as a result, as part of the cleaning the last
stamp test record is maintained, with all other test
attempts removed from the dataset.
It is the user’s responsibility to handle the raw
data cleaning and achieve data transformation into
a tabular structure as outlined in this Step (2) and
using a suitable data file format to store the clean
data. Remaining steps are performed on the cleaned
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Access historical qualification test database for an electronic product (data 
in raw format). Data for Nr devices and number of sequential tests dr

Raw Data 
Cleaning 
and Pre-

processing

Remove (1) text and symbols in the records that 
are labels or for information only, and (2) tests 

with binary outcome

Split the cleaned data into data sets of PASS and FAIL devices 

Transform non-numerical test data, e.g. 
hexadecimal results, PASS and FAIL labels, into 

respective numerical format

For each test in the 
qualification sequence, 

normalize test results over 0-1 

Distribution modelling of PASS and FAILL device 
data for each tests

Test #i identified as 
“sensitive to pending 

failure”

Machine Learning (ML) Prognostics Model Development.
Use combined PASS and FAIL device training data of tests sensitive to 

pending failure, up to current test #k

Keep one test record per device in case of re-
tested devices with multiple records

Failure statistic on FAIL devices 
dataset: Derive probability of 

failure (PoF) under given test i

Test Time 
Reduction: 
Move tests 
with high 

PoF first in 
the test 

sequence 

Are PASS data 
distributions for 
test #i and test #j

similar?

Are PASS and FAIL 
data distributions 
for a given test #i

similar?

Use Chi-Square p-value 
and Similarity Index

Identifying 
potentially 
redundant 

tests 

YES

NO

Test #i
identified as 

“not sensitive 
to pending 

failure”

Test sequence redefined: tests 
most sensitive to pending 

failure are first in the 
qualification sequence 

YES

Imbedded intelligent manufacturing capability:
Test Time Reduction via In-line prognostics of final qualification outcome (PASS or 

FAIL) for a DUT performed at sequential test #k (k<d) and using developed ML model

Fig. 3 Block diagram of the proposed data analytics approach for smart qualification testing of electronic devices

dataset where the number of tested devices is N
(N<Nr) and the number of individual tests main-
tained is d (d<dr).

Step 3 Predict probability of failure The actual clean test
data, containing records for both PASS and FAIL
DUTs, is first separated into PASS and FAIL

datasets. Failure statistics for all tests is undertaken
using the available data, and values for probability
of failure (POF) for a device under given test are
obtained.

Step 4 Normalise the data The test data is normalised over
the range 0–1. This is an important step to enable
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subsequent data analytics, specifically in the context
of similarity comparisons, and data-driven model
development. Different numerical strategies for the
normalisation of the data can be adopted, some of
these are discussed in greater detail in Sect. 4.2.1.
For example, a possible scheme to normalise the data
is the use the PASS data for a given test and use the
5th and 95th percentile of the actual data as 0 and 1
values respectively in the data normalised space for
that test.

Step 5 Construct probability distributions The normalised
test data of PASS and FAILDUT datasets are used to
derive, for each of the individual tests in the spec, dis-
tributions of the respective test measurements in the
format of probability distributions (histograms). It is
important that for all tests, constructed histograms
are specified to have exactly the same number of
bins in the normalised interval 0–1. This a manda-
tory requirement to enable the similarity calculations
detailed with Steps 6 and 7.

Step 6 Chi square test statistic The Chi square test statis-
tic and goodness-of-fit p value are used to calculate,
using the PASS data distribution for each test, how
similar the data distribution of that test is to the
distributions of test data gathered from all other
qualification tests. TheChi square test statistic calcu-
lation usinghistograms is detailed inSect. 4.3.1. This
theory is used to propose and adopt the use of a met-
ric, so-called Similarity Index (SI), that can rank data
distributions, and in this instance respectively quali-
fication tests, based on their similarity. The definition
of the SI, along with the conventional p-value from
theChi square goodness of fit test, are summarised in
Sect. 4.3.2. Mining of test data for similarity in test
data distributions enables to identify groups of tests
that can be seen as playing similar role in the qualifi-
cation of the device. This knowledge, along with the
test failure statistic information, can be used to sup-
port identifying (potential) redundant tests. While
engineering judgment is needed, and application-
specific requirements have to be accounted for, from
data analytics point of view an individual test can
be considered as a candidate for redundancy if the
following two test attributes exists simultaneously:

• No, or near zero (if acceptable), failures of the
device under the test, and

• The test outcome, in terms of distribution of the
result values, follows similar distribution as the
distribution of one or more preceding tests. The
criteria for minimum level of similarity is based
on having p value greater than 0.99, where the p
value is calculated from the Chi square goodness

of fit test applied to the PASS data distributions of
the two tests.

.
Step 7 Similarity index The Chi square statistic is used,

similarly as in Step (6) above, to evaluate the similar-
ity (respectively dissimilarity) in the measured test
data in the instance of PASS and FAIL DUT data
for a given test. This analysis informs which tests
are potentially sensitive (or not sensitive) to pend-
ing failure. If the distributions of measured test data
from PASS and FAIL devices, for a given test, differ
notably then the test has thepotential to detect out-of-
the-norm device performance thatmay be associated
with pending failure under a subsequent test in the
remaining part of the qualification test sequence. The
results can be used to inform on the existence and
the potential of qualification tests to underpin the
construction of predictivemachine learning and fault
classificationmodels for in-line test prognostics. The
ranking of the tests in the qualification in terms of
their sensitivity to pending failure uses the computed
values for the proposed Similarity Index defined in
Sect. 4.3.2.

Step 8 Optimise sequence of tests Optimisation of qualifi-
cation test sequence requires tests with high failure
rate and/or tests sensitive to pending failure to be per-
formed first in the sequential testing process. Likely
failure under tests in the sequence undertaken first
in the sequence of tests can offer reduction in test
time by avoiding unnecessary near-zero failure rate
tests (because they come later in the sequence). Also,
machine learning techniques can be used to develop
prognostic models that need only limited number of
completed tests, those undertaken first and sensitive
to pending failure, and offer predictive accuracy that
is superior compared with other test data use strate-
gies.

Step 9 Build training dataset and prognosticsmodelDecide
on a test in the optimised test sequence (denote test
# k) at which a MLmodel will be applied to forecast
the likely outcome of the overall qualification—pass
or fail. Use historical test data on the first k tests in
the optimised qualification spec to create a train in
dataset. Train a model structure of a binary classifier
(for example Support Vector Machine) to obtain a
prognostics model. Imbed the prognostics model for
in-line evaluation of qualification of a DUT.

The programming code for the implementation of the
methods and calculations associated with the computational
steps 1–9 of the proposed data analytics approach, as detailed
above, is written in MATLAB scientific computing pro-
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gramming environment (version R2018). The development
(writing, debugging and commenting) of the programming
code for the approach detailed in this section, and in the
context of this published work, is referred to as alpha-
stage software development and has taken approximately 150
person-hours of effort.

The current alpha-stage version of our MATALB pro-
gramming code that realises all required calculations, and
to obtain the results reported in this paper, has 1550 lines
of scripting. This number includes also the lines of com-
ments on the code that have been added. Follow up work that
authors are planning will aim to target specifically the tran-
sition of the programming code to beta-stage version that
will be optimized version of the current code, comprehen-
sively documented, and considered, subject to agreement and
approval by the funder, for release as open-source upon com-
pletion.

Qualification test datamodelling

Qualification datasets used in the study

The main feature of the analysis approach developed/applied
to the qualification test data is that it is a numerical approach.
For this reason, individual tests in the qualification procedure
are treated as being equally important and equally significant
in qualifying the electronic module and determining the final
overall qualification outcome (PASS or FAIL). The data is in
the format of structured numerical data gathered through per-
forming a series of sequentially executed test measurements.
Results obtained with this approach have to be considered in
addition to applying appropriate engineering judgement (e.g.
using knowledge about the role of a test in the qualification,
the physical aspect of product testing, etc.) and used in the
in the context of the respective product and application.

Historical qualification test datasets for 50,000+ elec-
tronic modules, referred here as Device under Test (DUTs),
are investigated. The proposed numerical approach for data
analytics is applied to assess a qualification procedure that
encompasses 150+ individual sequential tests. Some of the
tests are measurements that have the test outcome as real
value numbers, for example voltage, current, time durations,
power ratios, signal power strength and frequency.Other tests
provide measurements in Hex units, which, once transferred
from hexadecimal to decimal numbers, result in an integer
number. There are also tests for which the test parameter is
integer, for example, those that provide a count of some test
related characteristics. There are also logical tests that output
True or False values. Hence the sequence of tests result in
datasets that are real, integer and logical.

Some of the tests have double sided limits for the PASS
test condition and others are single sided. There are also test

results only provide information and hence do not affect the
qualification status and therefore are ignored in this analysis.

Performing a numerical-based analysis for such a range
of diverse tests that follows a generic (non-specific to the
test) computational approach is challenging. Following pre-
liminary investigations of the datasets, it was decided to
develop the data analytics approach based on distribution
modelling of the qualification test data and mining the data
behaviour/relationships using suitable techniques. Such an
approach can offer robustness and generalisation of the
proposed computations that are judged as being the most
important attributes of the proposed Smart-Test framework.

Considering test data behaviour via the distribution of data
is meaningful only for the qualification tests that generate
varying results. Therefore, the data mining studies are under-
taken only on a subset of tests for which the test result varies
and can be modelled as a distribution. For the data investi-
gated, there are 111 qualification tests, out of the total 150+
tests, that meet this criteria. All following studies detailed in
the paper use test data that is gathered only from these 111
tests. Remaining tests which are of the type logical tests with
PASS condition requiring TRUE (or FALSE) test outcome
and match hexadecimal (HEX) tests with PASS condition
requiring a specificHex value, are excluded from the datasets
handled with the proposed approach, and thus have no influ-
ence on obtained results.

Figure 4 shows a simplified, illustrative sample of the raw
measured tests data, in the format of normalised values, for
a particular type of electronics module. The measured para-
metric values for each sequential test are arranged column
wise, and the test results for each electronic module appear
in a row of the presented table. It should be noted that no
further tests are carried out once a module has failed under a
particular test in the test sequence. Hence, no test data will be
available for a module onwards from the test of failure. The
first four rows show indicative information about parametric
tests number/parameter, and upper and/or lower limits for the
PASS criterion of each individual test.

Distributionmodelling of test data

Cleaning and normalization of test data

Measurements from different qualification tests are differ-
ent. Some measurements are numerical decimal continuous
values, others give the result as an integer number or as a
Hex value. There are logical tests too. The magnitude/order
of the measured value (where numerical) can also be very
different. Measurement units from test to test change. Some
tests are double side limited, some have a limit only on one
side. The best strategy in numerical analysis to handle such
differences is to subject the data to normalisation. The nor-
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1 2 3 4 10 11 60
Upper limit 1 1 1 1 1 1 1
Lower limit 0 0 0 0 0 0 0
Module 1 0.11897 0.88349 0.48914 0.53865 0.18535 0.48090 0.02012
Module 2 0.08448 0.99432 0.55154 0.56794 0.17126 0.57001 0.02273
Module 3 0.08046 0.91191 0.51449 0.53167 0.14965 0.65764 0.01976
Module 4 0.03448 0.90622 0.41700 0.43496 0.16493 0.54107 0.02335
Module 5 0.13594 0.88349 0.18204 0.22847 4.11831
Module 6 0.08851 0.99432 0.55154 0.57819 0.18305 0.57365 0.02172
Module 7 0.08621 0.91191 0.49792 0.50350 0.18197 0.65706 0.01984
Module 8 0.08793 0.99147 0.52619 -0.92373
Module 9 0.09195 0.99147 0.45112 0.51727 0.12586 0.57273 0.02080
Module 10 0.12586 0.88349 0.48524 0.54832 0.20171 0.47633 0.02104
Module 11 0.03736 0.90338 0.43552 0.45752 0.12853 0.53894 0.02517
Module 12 0.09195 0.99147 0.50179 0.54334 0.16112 0.57304 0.02041
Module 13 0.08793 0.91191 0.52814 0.54480 0.16745 0.65678 0.02014
Module 14 0.12701 0.88349 0.51449 0.56677 0.22218 0.47361 0.02074
Module 15 0.03966 0.90338 0.42187 0.42354 0.15133 0.54013 0.02167
Module 16 0.09195 0.99147 0.49283 0.53279 0.11682 0.57115 0.02096
Module 17 0.08851 0.91191 0.45405 0.46513 0.16317 0.65714 0.02278
Module 18 0.12644 0.88349 0.44430 0.52459 0.19251 0.47399 0.02379
Module 19 0.07759 0.88633 0.51254 -0.99374
Module 20 0.09310 0.99147 0.49889 0.52723 0.17413 0.57326 0.02128
Module 21 0.08908 0.91191 0.47939 0.49403 0.15793 0.65560 0.02003
Module 22 0.12471 0.88349 0.37313 0.48915 0.20590 0.47338 0.02207
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Fig. 4 Illustrative example of qualification test data in normalised format

malisation scheme used in this study transforms the data
using normalised limits of 0 and 1.

Accounting for the overall approach and the need for
robust data handling, the following normalisation strategy
is formulated and implemented:

1. The raw test data is first cleaned (for details refer to
Sect. 3, Step 2 of the Methodology) and filtered into two,
PASS and FAIL, datasets.

2. The data for DUTs that PASS the qualification is asso-
ciated with the “normal” expected test behaviour in the
context ofmeasured values. For each test, different strate-
gies to decide on the actual lower and upper limit values
for the data normalisation over 0–1 have been considered
and tested. The method we applied uses values for nor-
malisation selected as a percentile of the entire PASS data
set for a given test; this method enables a robust solution
to the data normalisation problem. The low limit of the
data was selected as the 0.1 percentile and high limit as
the 99.9 percentile of the data. This way measurements
with outlier characteristics were not ignored. Both PASS
and FAIL data has been normalised over 0–1 range using
the above explained percentiles as the actual limits for
data normalisation.

Data distribution modelling

Modelling the distributions of the normalised data for each
test provides details on the behaviour of the data (how the
data is spread, the nature and magnitude of variation, etc.)
and allows comparison between respective test data. As we
deal with finite in size datasets of numerical values, the his-
togram modelling approach of data distribution is utilised.
Normalised test values less than 0 are binned in a single bin
and similarly a single bin holds all values above 1. A detailed
distribution is generated within the 0–1 interval. Histograms
generated on all tests use the same number of bins for the
data over the normalised range 0–1. This is an important
condition that the proposed approach demands in order to
enable the subsequent use of the method for similarity eval-
uations of tests. The vertical axis of the histogram denotes
‘probability’. The height of each bar is the relative number of
observations (number of observations in bin/total number of
observations), and the sum of all bar heights in the diagram
is 1.

Figure 5 shows an example of histogram models for the
data gathered on a particular qualification test. TheDUTs that
generated this data are devices that have passed all tests in
the sequence up to and including the particular test for which
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Fig. 5 Example of data distribution of measurements for a given test
gathered from PASS-status electronic modules (top) and FAIL-status
electronic modules (bottom)

this example is generated. The two presented histograms in
Fig. 5 are built by splitting the test data into two subsets: (1)
data from DUTs that passed all remaining tests in the quali-
fication sequence and thus have overall PASS status, and (2)
data fromDUTs that have failed one of the remaining tests in
the qualification sequence and thus have end-of-qualification
FAIL status. The resulting distribution from the data in (1)
above will be referred to as Pass Test Data Distribution (the
histogram at the top of Fig. 5 test example) and the one from
data in (2) as Fail Test Data Distribution (the histogram at
the bottom of Fig. 5 test example). We explore this type of
histogram distribution pairs, across all individual tests, in
subsequent similarity evaluations and assessing the sensitiv-
ity of a test to pending failure.

In the case of the test data from an electronic module
qualification demonstrated in this work, Pass Test Data Dis-
tributions for the tests in the qualification use data from over
50,000 tested modules. With such a large number of data
points, the confidence in the obtained distributions is high.
The size of the datasets underpinning the construction of the
Pass Test Data Distribution is substantially smaller, in the
order of 600.

Data similarity assessment

The use of histograms is convenient as it provides the ability
to compare different qualification tests, and also PASS and
FAIL data for a given test. By comparing how similar or
different are two data distributions, important observations
and conclusions regarding a qualification test procedure can
bemade. The quantitative approach to similarity assessments
of data distributions uses the use of Chi square statistic.

In statistics, the Chi square goodness-of-fit test is often
used to test if a sample of data comes from a population
with a known distribution. An attractive feature of the Chi
square test is that it can be applied to any univariate dis-
tribution for which the cumulative distribution function can
be calculated. The Chi square goodness-of-fit test is always
applied to binned data. In the case of non-binned data, one
can simply calculate a histogram or frequency table before
generating the Chi square test. As in our case the distribu-
tions are already in the format of histograms, the application
of Chi square statistic technique is very straightforward.

Chi square test statistic

With standard use of Chi square test goodness-of-fit, the
hypothesis that a set of data (i.e. observed values) comes
from a population with a given (specified) distribution (i.e.
expected values) is tested. This assessment uses the Chi
square test statistic χ2 that is defined as.

χ2 �
k∑

i�1

(Oi − Ei )
2/Ei (1)

where Oi is the observed frequency of data for bin i and Ei

is the expected frequency for bin i. The sum in Eq. (1) is
over the non-empty bins (k). When using Chi square test for
goodness-of-fit evaluation, expected frequency refers to the
given distribution and is calculated as

Ei � N (F(YU ) − F(YL)) (2)

where F is the cumulative distribution function for the distri-
bution being tested, YU is the upper limit for bin with index
i, YL is the lower limit for data bin i, and N is the sample size
of the observed data.

The value of the Chi square test statistic is dependent on
how the data is binned and sensitive to the choice of the bins.
There is no optimal choice for the bin width (since the opti-
mal bin width depends on the distribution). Most reasonable
choices produce similar, but not identical, results. A disad-
vantage of the Chi square test is that it requires a sufficient
sample size in order for the Chi square approximation to be
valid. In statistics, this will typically be posed as a require-
ment to have a minimum of 5 data values in each non-empty
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bin. This has been the case with the data used in our demon-
stration case study.

The goodness-of-fit part of the computation is based on
the fact thatχ2 follows approximatelyChi square distribution
with (k-c) degrees of freedom where k is the number of non-
empty bins and c is the number of estimated distribution
parameters (c� 1 in this study).With a specified significance
level α, a Chi square critical value (χ2

1−α,k−c) is obtained
using the Chi square distribution with (k − c) degrees of
freedom. The test statistic and the critical value are used to
check the condition

χ2 > χ2
1−α,k−c (3)

If this relation is true then the hypothesis that the data are
from a population with the specified distribution is rejected.

Similarity index (SI) and chi square p value

In this work, we adapt the use of Chi square test statistic
calculation to meet our objectives. We require a similarity
measure, or similarity index, that shows how similar is the
test data distribution given with one histogram to the data
modelled with another histogram.

First, the use of simplemetric termed Similarity Index (SI)
is proposed. The SI is the Chi square statistic value χ2 nor-
malised to the Chi square critical value χ2

1−α,k−c assuming
significance level α� 0.01 and (k − 1) degrees-of-freedom
where k is the number of non-empty bins in the histogram
pair:

SI � χ2

χ2
1−α,k−c

(4)

Larger values of SI indicate less similar datasets for a
pair of histograms while small values of SI are indicators
of greater similarity in the respective datasets. In this study,
the proposed similarity index is used to rank the qualifica-
tion tests given similarity between their respective PASS and
FAIL data distributions. An example of similarity evaluation
between data from PASS and FAIL devices for a test, with
SI � 3.72, is illustrated in Fig. 6.

While the use of the defined Similarity Index offers a
simple way to rank pairs of data according to the level of
their similarity, this metric will not answer the question if a
hypothesis that two datasets come from the same distribu-
tion can be accepted. This type of question comes into play
when performing the study on identifying redundant tests.
The standard Chi square goodness of fit test is using the so
called p-value to accept or reject the H0 hypothesis:

H0 The sample data from test i follows the specified distri-
bution for test j.

Fig. 6 Example of data similarity for a given qualification test in the
spec, along with calculated Similarity Index (SI)

The p value is calculated as:

p value � 1 − Chi SqCDF(χ2, DOF) (5)

where ChiSqCDF() is the Cumulative Density Function
(CDF) of the Chi Square distribution with DOF degrees of
freedom. The p value is between 0 and 1. With significance
level α (e.g. α � 0.01), p value greater than α is the condition
for the H0 hypothesis to be accepted. The significance level
is the probability that the hypothesis H0 is rejected while it
is actually true.

When we adopt the use of p value in this study, p value
greater than0.99 is used tomake the assertion that twoqualifi-
cation tests are sufficiently similar in the context of redundant
test identification, i.e. sample data from one test follows the
distribution of the other test.

Sensitivity of tests to pending failure

Little or no similarity between a pair ofPass Test DataDistri-
bution andFail TestDataDistribution of a given qualification
test is an indicator that the test produces measurement for the
DUTs that can be used as a precursor for the final, overall
qualification outcome, and thus can be used for prognostics.
By calculating the Similarity Index for each pair of Pass and
Fail Test Data Distributions using the respective data his-
tograms, across all analysed qualification tests, it is possible
to rank the tests with regards their data distribution similar-
ity and this way to assess their sensitivity to detect pending
failure.

Figure 7 shows two representative tests with dissimilar
pairs of PASS and FAIL data distributions. The difference
between the PASS data and the FAIL data distributions is
illustrated by overlapping the two histograms and the value
of the SI is included with each graph. Larger SI value means
greater difference in the test PASS and FAIL data distribu-
tions.
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Fig. 7 Example of two qualification tests with dissimilar distributions of PASS and FAIL module data indicating tests are sensitive to pending
(under subsequent sequential test) failure

Fig. 8 Example of two qualification tests with similar distributions of PASS and FAIL module data indicating tests are not sensitive to pending
(under subsequent sequential test) failure

Tests with the smallest SI are those tests for which distri-
bution of PASS and FAIL data are similar. We can consider
such tests as being less sensitive to detecting pending failure.
The test outcomes from testing good modules and modules
that fail the qualification do not differ notably and hence such
test measurement data do not contain useful information to
support prognostics modelling. Figure 8 details two exam-
ples of similar pairs of PASS–FAIL data distributions taken
from the full set of 111 analysed qualification tests.

All 111 qualification tests with our data have been fully
characterised and ranked according to their estimated simi-
larity index but in a similar way any other application data
derived from sequential tests for binary PASS–FAIL qualifi-
cation canbe rankedusing this approach.Thus, anordered list
of testsmost and least sensitive to pending failure is generated
and becomes available for use in developing and demonstrat-
ing the targeted in-line prognostics capability.

Identification of redundant tests

From data analytics point of view, an individual test can be
considered as a candidate for redundancy if the following
two test attributes exists simultaneously:

1. No, or near zero (if acceptable), failures under the test.
2. The test outcome, in terms of distribution of the result val-

ues, follows similar distribution as the distribution of one
or more preceding tests in the qualification test sequence.

From a simplistic point of view, meeting (1) above
alone might be seen as a sufficient condition alone to con-
sider/decide onpotential test redundancy. If, in a large enough
dataset, no modules fail that test then clearly the role of that
test is somewhat less important. The challenge here is that it
is very difficult to judge, in practical terms, what size of anal-
ysed data can provide sufficient confidence that indeed the
probability of a module failure under that test is indeed zero
or near zero. In practice, that judgement will have to accom-
modate the acceptable failure rate for the tested device.

Hence, we propose to add a second requirement, under (2)
above, which aims at the identification of test(s) that have the
same, or very similar, characteristics of the test result data.
Similarity in the measured test data behaviour would imply
the earlier test would detect and trigger the failed test condi-
tion, and all modules which, have passed the earlier test, will
now pass those that follow and have similar testmeasurement
characteristics. The tested physical aspect of themodule with
the particular test is not accounted for here. This considera-
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tion is important and will need to be considered by product
engineers in the light of the presented results from this data
analytics.

The calculated test similarities are based on pairs of tests
(test i and test j) and involve assessment of their respective
PASS data distributions. This has been done for all possible
pairs of tests (i, j) within the set of 111 analysed qualification
tests (i.e. i� 1,110 and j� (i+ 1), 111). The similarity evalu-
ations use the calculated p-value in the Chi square goodness
of fit test, as detailed previously in the paper.

Figure 9 details an example of identified group of four
qualification tests with similarity in the test data behaviour.
For each test, the respective number of failures under the test
is also considered; this is to ensure identifying tests that meet
both requirement (1) and (2) above. A test in a group with
zero failures and preceded by another test (or other tests) in
the group can potentially be considered redundant.

In-line prognostics

Themain benefit of the data analytics detailed in the previous
sections is the knowledge generated on the tests defined as
being sensitive to pending failure. Such tests are assumed to
be run first in the sequence, and would form the training data
required by machine learning methods. Thus the test values
will be associated with the model inputs for the constructed
machine learning predictive model. Models built from such
test data will be more robust, less complex in terms of model
structure (as a result can be run faster) and more accurate. A
prognostics model, with input data from the first k completed
tests in the qualification sequence, is used the forecast the
overall outcome of the qualification—it makes a prediction
if the current DUT will pass all remaining tests in the test
sequence or not.

Prognostics model development using support
vector machine

The demonstrations in our work rely on the use of Sup-
port Vector Machine (SVM) models for binary classification
(Vapnik 1995; Cristianini and Shawe-Taylor 2000; Ben-Hur
et al. 2001; Hastie et al. 2008). A support vector machine is
constructed from data by finding the “best hyperplane” that
separates the data points into the respective two classes (in
this application the two classes are Pass and Fail devices).
The “best hyperplane” is defined as the one providing the
largest margin of separation between the points in the two
classes.

As with all machine-learning methods, a SVM model is
developed from the so-called training dataset so that the
unknown parameters of the chosenmodel structure are calcu-
lated through solving an optimisation problem that provides

the smallest error between the model prediction for the clas-
sification class (− 1 or 1, for FAIL and PASS respectively)
and the actual target outcome. As pointed out in Sect. 3,
the MATLAB programming environment is used to develop
and demonstrate the models reported in this paper (Matlab
Release 2018).

From a mathematical point of view, if N is the number
of the training data points to build the SVM classifier, xi is
the feature vector (xi∈Rd, i� 1, N) and yi is the associated
binary outcome (yi ∈ {− 1,1}), a binary SVM classifier f (x)
is defined so that

f (xi ) �
{≥ 0 f or yi � +1

< 0 f or yi � −1
(6)

Thus, the condition for correct classification becomes: yi f
(xi ) > 0.

In this work, we adopt the dual version of binary SVM
classifier that in its linear, dual form formulation can be
expressed as (Cristianini and Shawe-Taylor 2000):

f (x) �
N∑

i�1

αi yi
(
xTi x

)
+ b (7)

To construct themodel, the training data (xi, yi), i� 1,…,N
is used, and the following optimisation problem with regards
the unknown vector α

(
αRN

)
is solved in the process of SVM

model construction:

max
αi≥0

∑

i

αi − 1

2

∑

j,k

α jαk y j yk
(
xTj xk

)

subject to

N∑

i�1

αi yi � 0

0 ≤ αi ≤ C, i � 1, . . . , N (8)

where C is the so-called penalty parameter. Larger values of
C put the emphasis during training of the SVM on a stricter
separation between the two binary classes. If the value of C
is reduced, towards 0, this makes misclassification for the
SVM model less important. The penalty parameter has been
set to 1 for all models developed in this study.

In the case when the data cannot be separated by simple
hyperplane using the above linear SVM model, non-linear
variants of SVM classifiers can produce results that are more
accurate. The models developed and reported in the paper
are all non-linear SVM binary classifiers that are developed
by mapping of the original feature vector space of X, Rd,

onto higher dimension transformed feature space of �(x),
RD (d<D), where data in hand becomes linearly separable:

� : X → �(X), Rd → RD (9)
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Fig. 9 Example of group of four qualification tests with similar distributions of their PASS module data

Constricting the non-linear SVM uses of the kernel trick-
—it is not required to explicitly define the transformation
function � because the definitions of the linear SVM model
and the optimisation problem to compute α

(
αRN

)
in the

transformed high dimensional space RD require only the dot
product <�(Xj)T, �(Xk)>. Without the need to explicitly
compute �(X), a kernel function, G

(
x j , xk

)
is utilised in the

computational process, defined as

G
(
x j , xk

) � 〈�(x j)T,�(xk)〉 (10)

The non-linear SVM model developed and demonstrated
are developed using Gaussian kernel function.

G
(
x j , xk

) � e−‖x j−xk‖2
(11)

The optimisation problem (8), formulated in the trans-
formed space�(X) and using the kernel G

(
x j , xk

)
, is solved

using the MATLAB implementation of the Sequential Min-
imal Optimization algorithm (Fan et al. 2005).

Two case studies are discussed. The first study evaluates
the expected benefit of the proposed approach of using tests
sensitive for pending failure to define and construct the train-
ing datasets. Results are used to prove the validity of the
data mining approach that has been utilised with the aim to
enable highly efficient ML predictive model development.
The second case study provides a perspective on the impli-
cation of ML model accuracy for the actual production line
if in-line prognostics is embedded and used. This assessment
is given in the context of the results obtained using accessed
real datasets and associate models developed.

The developed SVM models use training datasets com-
prising of test records for 1070 selected DUTs (N� 1070)
and the validation data sets include 150 DUTs. The DUTs
in both datasets are randomly selected, with the number of
the PASS and FAIL DUTs in the datasets being equal (50:50
split in the data). This is an important requirement to ensure
balanced information is provided when the model is devel-
oped and constructed as well as to ease the comparison of
the performance for the deferent models being developed.
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Fig. 10 Prognostics
performance of two SVM
models each using 20
qualification test results as
input: (1) most sensitive to
pending failure tests in the range
of tests from 1 to 40 (left) and
(2) least sensitive to pending
failure tests in the range of tests
from 1 to 40 (right)

Case study 1: prognostics performance with tests
sensitive to pending failure

To test the expected benefit of the definition and identification
of tests sensitive to pending failure, we compare the predic-
tive capability of twoSVMmodels. The twomodels aremade
“equivalent” in the sense that they have identicalmodel struc-
ture and are both using information from 20 completed tests
out of the total 111 tests in the sequential test procedure. A
practicalway to approach thismodel developments and allow
for model comparison in a like-to-like manner, is to assume
the scenario when the DUT’s have passed the first 40 tests in
the sequence of tests, and test No. 40 is the current test. We
use the Similarity Index (SI) results from the data analytics
investigation and split the first 40 tests into two equal groups
of tests with size 20 tests each. In the first group, we select
the 20 most sensitive to pending failure tests, according to
their SI, among the originally sequenced tests (test 1 to test
40) in the spec. Similarly, the second group represents the 20
tests identified as being the least sensitive to pending failure
among the first 40 tests.

With each of the two groups of tests, in an identical man-
ner (using exactly the same training datasets, as size and
as DUT data records, and same cross-validation of gener-
ated models) we obtained SVMmodels with each of the two
training dataset options. The inputs for each model are the 20
test results (measurements) from the respective tests, which,
assuming current test completed is No. 40, are all available
results at that point of the test sequence. With the training
data we use the known final qualification outcome, FAIL (1)
or PASS (− 1), to construct the models. The SVM models
make binary prediction, − 1 or 1, for a given input of mea-
surements on a device gathered from the respective 20 tests.

The predictive power and performance of the two models
is evaluated using validation dataset. The model predictive
accuracy for the SVM that uses 20 sensitive to pending fail-
ure tests is detailed in Fig. 10 (left) in the form of confusion

matrix plot. This is an average result obtained from large
number (in this instance 100) SVMmodels built from differ-
ent training and validation datasets (i.e. using different sets
of randomly selected DUTs).

On the confusion matrix plot, the rows correspond to
the predicted qualification status with the SVM (Predicted
Qualification Outcome), and the columns show the actual
(verified with testing) qualification status (Actual Qualifica-
tion Outcome). The diagonal cells show the percentage of
DUTs for which qualification is predicted correctly (actual
and predicted qualification status match). The off-diagonal
cells detail the % of DUTs which were not classified cor-
rectly. The far right column shows the accuracy for each
predicted status and the bottom row shows the accuracy for
each actual outcome. The cell in the bottom right of the plot
shows the overall accuracy, in this instance 83.6%.

In a similar way, the results from the SVM model with
identical complexity and same size of input information, but
now based on 20 least sensitive to pending failure tests in
the range of tests from 1 to 40, are summarised with Fig. 10
(right). Clear difference in the predictive capability between
the two models is observed. With this prognostics model
build with data from tests that are not sensitive to pending
failure, the prediction accuracy for the DUTs qualification
status has decreased dramatically to 62% only.

This study confirms that the approach of formulation and
identification of the so-called tests sensitive to pending fail-
ure, based on similarity index attributes, is a key, integral part
of the in-line prognostics strategy to smart-test execution, and
offers clear improvement in the accuracy of the constructed
machine learning models.

Case study 2: applied prognostics for test time/cost
reduction

Case Study 2 develops SVMmodel using approximately 1/4
of the total number of qualification tests (actual number is
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Fig. 11 Prognostics model results from SVM model using test results
from 27 sensitive to pending failure tests (out of total 111 tests)

27, out of 111 tests). The tests are chosen to be tests sensitive
to pending failure. In a modified and optimised qualification
spec, these 27 tests will be scheduled to run first and thus will
be performed before all other remaining 84 tests. Hence, this
study assesses the potential benefit and the implications of
using prognostics predictions for a DUT qualification in a
scenario of running ¼ of the tests for our application. In this
instance, time and cost reduction associated with not running
the remaining ¾ of the tests (84 tests out of 111 tests) will
be achieved.

Figure 11 shows the confusion matrix plot that captures
the average model performance calculated from validation
results gathered from 100 different validation datasets. The
overall average accuracy is found to be 88.7%,withminimum
and maximum overall accuracy of the SVM models from
different DUT randomised training and validation datasets
being 86% and 90.7% respectively.

The practical use of the model predictions, in the mode of
in-line prognostics runs, will require all DUTs that receive
model predictions for FAIL status to see continuing testing
under the remaining tests. This is based onmodel-based prog-
nostics strategy that applies:

1. Complete qualification of devices for which the model
predicts FAIL status. Continuing testing under remaining
tests in the qualification sequence is performed to confirm
the actual qualification status of those devices.

2. Model-based qualification of the devices for which the
model predicts PASS status. DUTs are qualified based on
actual tests results for the first k tests (assuming model
predictions performed at test k; k� 27 in the discussed
demonstration). Remaining tests in the sequence are not
executed, thus reducing qualification test time.

Let us denote the population size of the DUTs for qualifi-
cation asS,with actual number of PASSdevicesSp and actual
number of FAIL devices Sf (S� Sp+ Sf). In the instance of

theCase Study 2model predictions, the number of the devices
that receive FAIL status model prediction, and therefore will
undergo complete testing to the end, is

0.797Sf + 0.023Sp

The first term accounts for the devices with actual fail sta-
tus forwhich themodel gave correct prediction FAIL (79.7%,
Fig. 11, first cell in row three of the confusion matrix). The
second term represents the number of devices that are actu-
ally good (Actual PASS) but were given FAIL status from
the model prediction, i.e. misclassified (2.3%, Fig. 11, sec-
ond cell in row three of the confusion matrix). Performing
the remaining tests on these devices means that no time/cost
saving is possible to achieve. However, in practice the num-
ber of these devices will represent a very small proportion
from the entire population.

For this application and as an example, assume product
failure in qualification is in the range of 1% (Sf� 0.01S
and Sp� 0.99*S). This means that approximately 3% of the
entire DUT population will need continuing testing beyond
the 27 tests. In this instance, the balance of the DUT popu-
lation (97%) would have received PASS qualification status
from the model and will not be tested any further. The risk
acceptedwith thismodel-based qualification approach in this
instance would be that 20.3% of the DUTs that would actu-
ally FAIL the qualification, if preformed to the end, have been
accepted as having PASS status based on inaccurate model
classification (equivalent to up to 2 devices per 1000 tested).
Thus, in the case of this production line and product, and
assuming manufacturing yield of 99%, a massive 75% qual-
ification test time/cost reduction will be achieved on 97% of
the total population of DUTs if up to 2 wrongly qualified
devices per 1000 DUTs can be accepted.

A prognostics model, in line with the demonstration
detailed here, can be developed and employed in an identi-
cal way after the completion of different number of tests, for
example once 40%, 50%, or any other percentage of the total
number of tests are completed. While with larger number of
completed tests the expected model accuracy may improve,
the downside is that the benefit of reducing the overall quali-
fication test time becomes lower as the model is deployed at
later point in the sequence of tests.

Conclusions

This investigation aimed at the formulation and the develop-
ment of a novel, computational intelligence-based approach
to optimisation of qualification testing of electronic products
by reducing test time and cost through off-line data analyt-
ics and imbedded in-line model-enabled prognostics. The
developed approach is applicable to themost common type of
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testing in the electronics industry—themulti-parameter elec-
trical testing performed by utilising typically a large number,
in the order of several hundreds, individual electrical tests.
The proposed methodology and the associated models were
developed, tested and validated with rigour using compre-
hensive datasets of real historical qualification data on an
electronic module.

Mining test data with respect to failure statistic has
informed on an alternative sequence for the tests execu-
tion—one that requires preforming first the tests with high
failure rate—that can offer an overall qualification time
reduction. Data mining for similarity using adapted Chi
square test statistic/goodness-of-fit theory and the proposed
similarity index-based analytics enabled a robust approach
for identifying pairs and groups of tests with similar distri-
butional behaviour in the test results data. Combining this
information with failure statistic results provided the knowl-
edge base for identifying potentially redundant tests in the
qualification specification. Final decisions on redundant tests
need to be takenwith careful considerations and further input
from test engineers considering the physical or functional
aspect of the device that a test is checking.

A significant development in this research is the formu-
lation and identification of qualification tests sensitive to
pending failure using the information on uncovered data
similarities. In the context of imbedded in-line prognostics
capability in electronics product testing, the identification
of the tests sensitive to pending failure in the qualification
can support the efficient use of the data in designing training
datasets for machine learning, and to build forecasting mod-
elswith enhanced accuracyof the predictions for the expected
qualification outcomes. This implies that further optimisation
of the qualification specification is possible by moving the
tests sensitive to pending failure as early as possible in the
overall sequence of tests. Thus, efficient prognostics models
can be adopted in the test sequence earlier than otherwise this
would be possible. The time and cost benefits of the proposed
test optimisation strategy were demonstrated successfully
using the real qualification test datasets on the electronics
module. SVM classifiers trained with only a quarter of the
qualification tests, selected to be sensitive to pending failure
and run first, were capable of forecasting the final outcome
of the qualification with a level of accuracy close to 90%.

The proposed smart test methodology to optimise electri-
cal and functional qualification test specifications of elec-
tronic devices through use of data mining and machine
learning techniques, and by adopting imbeddedmodel-based
prognosis for qualification test outcomes has the potential to
transform the current practices in the industry of undertak-
ing comprehensive and time consuming testing. The major
impact of this research is associated with the clear benefits,
in terms of qualification test cost-time reduction, of adopt-

ing the discussed data analytics technologies, and with the
presented opportunity to make this process more intelligent.
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