Skip to main content
Log in

Joint optimization of capacity, production and maintenance planning of leased machines

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper deals with capacity design, production and preventive maintenance planning of a production system made of parallel leased machines. The production system must satisfy a random demand over a finite number of periods. The number of machines to be leased, the quantity to produce by each one and customer demand are variable. A joint optimization approach of a maintenance strategy and an economical production plan is developed by considering the influence of usage rates on the degradation of machines. Firstly, we determine a nearly optimal number of machines to be leased as well as the quantities to produce during each period. Secondly, given the obtained production plan, a periodic preventive maintenance policy with minimal repairs at failure is determined for each machine. Branch and bound and random exploration methods are used to obtain an optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aghezzaf, E., & Najid, N. (2008). Integrated production and preventive maintenance in production systems subject to random failures. European Journal of Operational Research,178, 3382–3392.

    Google Scholar 

  • Allaoui, H., Lamourib, S., Artiba, A., & Aghezzaf, E. (2008). Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan. Int. J. Production Economics,112, 161–167.

    Google Scholar 

  • Andradóttir, S. (2006). An overview of simulation optimization via random search. Handbooks in operations research and management science,13, 617–631.

    Google Scholar 

  • Bouguerra, S., Chelbi, A., & Rezg, N. (2012). A decision model for adopting an extended warranty under different maintenance policies. International Journal of Production Economics,135, 840–849.

    Google Scholar 

  • Brandolese, M., Fransi, M., & Pozzeti, A. (1996). Production and maintenance integrated planning. International Journal of Production Research,34, 2059–2075.

    Google Scholar 

  • Cassady, C. R., & Kutanoglu, E. (2005). Integrating preventive maintenance planning and production scheduling for a single machine. IEEE Transactions on Reliability,54(2), 304–309.

    Google Scholar 

  • Chang, W. L., & Lo, H. C. (2011). Joint determination of lease period and preventive maintenance policy for leased equipment with residual value. Journal Computers and Industrial Engineering,61(3), 489–496.

    Google Scholar 

  • Chelbi, A., & Ait-Kadi, D. (2004). Analysis of a production/inventory system with randomly failing production unit submitted to regular preventive maintenance. European Journal of Operational Research,156(3), 712–718.

    Google Scholar 

  • Cui, W. W., Lu, Z., & Pan, E. (2014). Integrated production scheduling and maintenance policy for robustness in a single machine. Computers & Operations Research,47, 81–91.

    Google Scholar 

  • Dahane, M., Clementz, C., & Rezg, N. (2010). Effects of extension of subcontracting on a production system in a joint maintenance and production context. Computers & Industrial Engineering,58(1), 88–96. https://doi.org/10.1016/j.cie.2009.08.007.

    Article  Google Scholar 

  • Dellagi, S., Rezg, N., & Xie, X. (2007). Preventive maintenance of manufacturing systems under environmental constraints. International Journal of Production Research,45(5), 1233.

    Google Scholar 

  • Desai, P., & Purohit, D. (1998). Leasing and selling: Optimal marketing strategies for durable gods firm. Management Science,44, 19–34.

    Google Scholar 

  • Fakher, H. B., Nourelfath, M., Gendreau, M., (2015). Joint production-maintenance planning in an imperfect system with quality degradation. In 6th IESM conference, October 2015, Seville, Spain.

  • Graves, H. G., & Lee, C.-Y. (1999). Scheduling maintenance and semi-resumable jobs on a single machine. Naval Research Logistics,46, 845–863.

    Google Scholar 

  • Hajej, Z., Dellagi, S., & Rezg, N. (2011). Optimal integrated maintenance/production policy for randomly failing systems with variable failure rate. International Journal of Production Research,49(19), 5695–5712.

    Google Scholar 

  • Hajej, Z., Dellagi, S., & Rezg, N. (2012). Joint optimization of maintenance and production policies with subcontracting and product returns. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-012-0707-9.

    Article  Google Scholar 

  • Hax, A. C., & Candea, D. (1984). Production and inventory management. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Hnaien, F., Yalaoui, F., Mhadhbi, A., & Nourelfath, M. (2016). A mixed-integer programming model for integrated production and maintenance. IFAC-PapersOnLine,49–12, 556–561.

    Google Scholar 

  • Holt, C. C., Modigliani, F., Muth, J. F., & Simon, H. A. (1960). Planning production, inventory and work force. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Kenne, J. P., & Gharbi, A. (2004). Control of production and corrective maintenance rates in a multiple-product manufacturing system. Mathematical and Computer Modelling,38, 865–875.

    Google Scholar 

  • Kenne, J. P., & Nkeungoue, L. J. (2008). Simultaneous control of production, preventive and corrective maintenance rates of failure prone manufacturing system. Applied Numerical Mathematics,58, 180–194.

    Google Scholar 

  • Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly line balancing—a branch and bound procedure. European Journal of Operational Research,91(2), 367–385.

    Google Scholar 

  • Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica: Journal of the Econometric Society,28, 497–520.

    Google Scholar 

  • Lee, C. Y., & Chen, Z. L. (2000). Scheduling jobs and maintenance activities on parallel machines. Naval Research Logistics,47, 145–165.

    Google Scholar 

  • Little, J. D., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the traveling salesman problem. Operations Research,11(6), 972–989.

    Google Scholar 

  • Liu, X., Wang, W., & Peng, R. (2015). An integrated production, inventory and preventive maintenance model for a multi-product production system. Reliability Engineering & System Safety,137, 76–86.

    Google Scholar 

  • Miller, M. H., & Upton, C. W. (1976). Leasing, buying, and the cost of capital services. The Journal of Finance,31, 761–786.

    Google Scholar 

  • Mont, O., Dalhammar, C., & Jacobsson, N. (2006). A new business model for baby prams based on leasing and product remanufacturing. Journal of Cleaner Production,14, 1509–1518.

    Google Scholar 

  • Nakagawa, T. (2005). Maintenance theory of reliability. Berlin: Springer. https://doi.org/10.1007/1-84628-221-7.

    Book  Google Scholar 

  • Nakagawa, T., & Mizutani, S. (2009). A summary of maintenance policies for a finite interval. Reliability Engineering and System Safety,94, 89–96.

    Google Scholar 

  • Nodem, F. I. D., Kenné, J. P., & Gharbi, A. (2011). Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems. International Journal of Production Economics,134(1), 271–282.

    Google Scholar 

  • Nourelfath, M., & Châtelet, E. (2012). Integrating production, inventory and maintenance planning for a parallel system with dependent components. Reliability Engineering and System Safety,101, 59–66.

    Google Scholar 

  • Ouali, M. S., Rezg, N., & Xie, X. (2002). Maintenance préventive et optimisation des flux d’un système de production. Journal Européen des Systèmes Automatisés (JESA),36, 97–116.

    Google Scholar 

  • Pandey, D., Kulkarni, M. S., & Vrat, P. (2010). Joint consideration of production scheduling, maintenance and quality policies: A review and conceptual framework. International Journal of Advanced Operations Management,2(1–2), 1–24.

    Google Scholar 

  • Radhoui, M., Rezg, N., & Chelbi, A. (2010). Joint quality control and preventive maintenance strategy for imperfect production processes. Journal of Intelligent Manufacturing,21(2), 205–212.

    Google Scholar 

  • Rezg, N., Mati, Y., & Xie, X. (2004). Joint optimization of preventive maintenance and inventory control in a production line using simulation. International Journal of Production Research,44, 2029–2046.

    Google Scholar 

  • Schutz, J., Rezg, N., & Léger, J.-B. (2011). Periodic and sequential preventive maintenance policies over a finite planning horizon with a dynamic failure law. Journal of Intelligent Manufacturing,22(4), 523.

    Google Scholar 

  • Silva Filho, O., (2001). Linear quadratic gaussian problem with constraints applied to aggregated production planning. In Proceeding of the American Control Conference, Arlington.

  • Silva Filho, O. S., & Ventura, S. D. (1999). Optimal feedback control scheme helping managers to adjust aggregate industrial resources. Control Engineering Practice,7, 555–563.

    Google Scholar 

  • Singhal, J., & Singhal, K. (1996). Alternate approaches to solving the holt et al. model and to performing sensitivity analysis. European Journal of Operational Research,91, 89–98.

    Google Scholar 

  • Tian, Z., Lin, D., & Wu, B. (2012). Condition based maintenance optimization considering multiple objectives. Journal of Intelligent Manufacturing,23, 333–340.

    Google Scholar 

  • Weinstein, L., & Chung, C. (1999). Integrating maintenance and production decisions in a hierarchical production planning environment. Computers & Operations Research,26, 1059–1074.

    Google Scholar 

  • Yalaoui, A., Chaabi, K., & Yalaoui, F. (2014). Integrated production planning and preventive maintenance in deteriorating production systems. Information Sciences,278, 841–861.

    Google Scholar 

  • Yang, Z., Djurdjanovic, D., & Ni, J. (2008). Maintenance scheduling in manufacturing systems based on predicted machine degradation. Journal of Intelligent Manufacturing,19, 87–98.

    Google Scholar 

  • Yeh, R. H., & Chen, C. K. (2006). Periodical preventive maintenance contract for a leased facility with weibull life time. Quality & Quantity,40(2), 303–313.

    Google Scholar 

  • Yeh, R. H., Kao, K. C., & Chang, W. L. (2009). Optimal preventive maintenance policy for leased equipment using failure rate reduction. Computers & Industrial Engineering,1, 304–309.

    Google Scholar 

  • Yildiz, A. R. (2009). A novel particle swarm optimization approach for product design and manufacturing. International Journal of Advanced Manufacturing Technology,40, 617–628.

    Google Scholar 

  • Yildiz, A. R. (2013). A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Applied Soft Computing,13, 1561–1566.

    Google Scholar 

  • Zhao, S., Wang, L., & Zheng, Y. (2014). Integrating production planning and maintenance: An iterative method. Industrial Management & Data Systems,114(2), 162–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zied Hajej.

Appendices

Appendix A. Deterministic transformation

We will aim at demonstrating the following expression needed to transform the stochastic model to a deterministic one:

$$\begin{aligned} &\sum\limits_{k = 1}^{H} {E\left[ {\left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)^{2} } \right]} = \sum\limits_{k = 1}^{H} {\left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \hat{D}_{k} } \right)^{2} }\\ & \quad+ {\left( {1 + a_{2} } \right)^{2} \cdot \sigma_{D}^{2} \cdot H} + a_{2}^{2} \cdot \sigma_{d}^{2} \cdot \frac{H}{2} \cdot \left( {H - 2} \right) \end{aligned} $$
$$ P_{k} = u \times \Delta k \times \sum\limits_{i = 1}^{{M_{k} }} {\left( {X_{ik}^{N} + X_{ik}^{S} } \right)} $$
$$ E\left( {I_{k} } \right) = \hat{I}_{k} ;E\left( {D_{k} } \right) = \mu_{k}^{d} ;E\left( {M_{k} } \right) = M_{k} ;E\left( {P_{k} } \right) = P_{k} ; $$
$$ V\left( {D_{k} } \right) = \sigma_{d}^{2} ;V\left( {P_{k} } \right) = 0. $$

We have:

$$ I_{k} = I_{k - 1} + P_{k} - D_{k} $$

So, \( E\left( {I_{k} } \right) = \hat{I}_{k} = \hat{I}_{k - 1} + P_{k} - \mu_{k}^{d} \)

$$ \left( {\hat{I}_{k} - I_{k} } \right)^{2} = \left( {\left( {\hat{I}_{k - 1} - I_{k - 1} } \right) - \left( {\mu_{k}^{d} - D_{k} } \right)} \right)^{2} $$
$$ \begin{aligned} E\left( {\hat{I}_{k} - I_{k} } \right)^{2} &= E\left( {\left( {\hat{I}_{k - 1} - I_{k - 1} } \right) - \left( {\mu_{k}^{d} - D_{k} } \right)} \right)^{2} \hfill \\ &= E\left( {\left( {\hat{I}_{k - 1} - I_{k - 1} } \right)^{2} } \right) + E\left( {\left( {\mu_{k}^{d} - D_{k} } \right)^{2} } \right)\hfill \\ &\quad - 2 \times E\left( {\hat{I}_{k - 1} - I_{k - 1} } \right) \times E\left( {\mu_{k}^{d} - D_{k} } \right) \hfill \\ & = \,E\left( {\hat{I}_{k - 1} - I_{k - 1} } \right)^{2} + \,E\left( {\mu_{k}^{d} - D_{k} } \right)^{2} \hfill \\ \end{aligned} $$

Since:

$$ \left\{ \begin{aligned} &E\left( {\hat{I}_{k - 1} - I_{k - 1} } \right)= E\left( {\hat{I}_{k} } \right) - E\left( {I_{k} } \right) = 0 \hfill \\ &E\left( {\mu_{k}^{d} - D_{k} } \right) = \mu_{k}^{d} - E\left( {D_{k} } \right) = 0 \hfill \\ \end{aligned} \right. $$

Thus, using the variance expression, we obtain that:

$$ V\left( {I_{k} } \right) = V\left( {I_{0} } \right) + \sigma_{d}^{2} $$

Assuming that \( V\left( {I_{0} } \right) = 0 \) and using this equality and by iterations, we can easily proof that:

$$ V\left( {I_{k} } \right) = k \cdot \sigma_{d}^{2} $$

Since the variance expression of Ik can be written as follows:

$$ V\left( {I_{k} } \right) = E\left( {I_{k}^{2} } \right) - \left[ {E\left( {I_{k} } \right)} \right]^{2} $$

So, we obtain:

$$ E\left( {I_{k}^{2} } \right) = V\left( {I_{0} } \right) + k \cdot \sigma_{d}^{2} + \hat{I}_{k}^{2} $$

On the other hand, we have\( I_{k} = I_{k - 1} + P_{k} - D_{k} \) is equivalent to \( D_{k} = I_{k - 1} - I_{k} + P_{k} \)

So:

$$ I_{k} - a_{1} - a_{2} \cdot D_{t} = \left( {1 + a_{2} } \right) \cdot I_{k} - a_{1} - a_{2} \cdot I_{k - 1} - a_{2} \cdot P_{k} $$

And

$$ \hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{k}^{d} = \left( {1 + a_{2} } \right) \cdot \hat{I}_{k} - a_{1} - a_{2} \cdot \hat{I}_{k - 1} - a_{2} \cdot P_{k} $$

Using both equalities above, we can conclude the following expected expression:

$$ \begin{aligned} & E\left[ {\left( {\left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{k}^{d} } \right) - \left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)} \right)^{2} } \right] \\ & \quad = \left( {1 + a_{2} } \right)^{2} \cdot E\left[ {\left( {\hat{I}_{k} - I_{k} } \right)^{2} } \right] + a_{2}^{2} \cdot E\left[ {\left( {\hat{I}_{k - 1} - I_{k - 1} } \right)^{2} } \right] \\ & \quad = \left( {1 + a_{2} } \right)^{2} \cdot \left( {V\left( {I_{0} } \right) + k \cdot \sigma_{d}^{2} } \right) + a_{2}^{2} \cdot \left( {V\left( {I_{0} } \right) + \left( {k - 1} \right) \cdot \sigma_{d}^{2} } \right) \\ \end{aligned} $$

Also, we can write:

$$ \begin{aligned} & E\left[ {\left( {\left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{k}^{d} } \right) - \left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)} \right)^{2} } \right] \\ & \quad = V\left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right) \\ & \quad = E\left[ {\left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)^{2} } \right] - \left( {E\left[ {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right]} \right)^{2} \\ \end{aligned} $$

Regarding the two above equations, we obtain:

$$ \begin{aligned} E\left[ {\left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)^{2} } \right] &= \left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{k}^{d} } \right)^{2} \\& \quad + \left( {1 + a_{2} } \right)^{2} \cdot \left( {V(I_{0} ) + k \cdot \sigma_{d}^{2} } \right)\\& \quad + a_{2}^{2} \cdot \left( {V\left( {I_{0} } \right) + \left( {k - 1} \right) \cdot \sigma_{d}^{2} } \right) \end{aligned}$$

We assume that V(I0) = 0, therefore in the objective function we can make the following transformation:

$$ \begin{aligned} & \sum\limits_{k = 1}^{H} {E\left[ {\left( {I_{k} - a_{1} - a_{2} \cdot D_{k} } \right)^{2} } \right]} = \sum\limits_{k = 1}^{H} {\left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{t}^{d} } \right)^{2} }\\ &\quad\quad{ + \left( {1 + a_{2} } \right)^{2} \cdot \sigma_{D}^{2} \cdot \sum\limits_{k = 1}^{H} k } + a_{2}^{2} \cdot \sigma_{d}^{2} \cdot \sum\limits_{k = 1}^{H} {\left( {k - 1} \right)} \\ & \quad = \sum\limits_{k = 1}^{H} {\left( {\hat{I}_{k} - a_{1} - a_{2} \cdot \mu_{k}^{d} } \right)^{2} + \left( {1 + a_{2} } \right)^{2} \cdot \sigma_{d}^{2} \cdot \frac{H}{2} } \\ & \quad \quad\cdot \left( {H + 1} \right) + a_{2}^{2}\cdot \sigma_{d}^{2} \cdot \frac{H}{2} \cdot \left( {H - 1} \right) \\ \end{aligned} $$

Appendix B. Service rate constraint transformation

In order to ensure the customer satisfaction, we take into account in our model a probabilistic constraint given by:

$$ Prob\left( {I_{k} \ge 0} \right) \ge \beta $$

Looking forward to resolving the model, it was necessary to transform it from a stochastic probabilistic form to a deterministic one. To do this, we transform the service rate constraint announced above as follows:

$$ Prob\left( {I_{k} \ge 0} \right) \ge \beta \to P_{k} \ge P_{\beta } \left( {\beta ,\hat{I}_{k - 1} } \right) $$

where

$$ P_{k} \ge P_{\beta } \left( {\beta ,I_{k - 1} } \right) = \sqrt k \times \left( {\sigma_{d} } \right) \times \varphi^{ - 1} \left( \beta \right) - \hat{I}_{k - 1} + \mu_{k}^{D} $$

In fact: From proof (A), the variance of inventory variable is defined by \( V\left( {I_{k} } \right) = k \cdot \sigma_{d}^{2} \). This inventory variable depends linearly on the random demand variation. It’s possible to consider the inventory variable as a random variable follows a normal distribution defined by:

$$ I_{k} = \hat{I}_{k} + X_{k} \times \sqrt {V\left( {I_{k} } \right)} \Leftrightarrow I_{k} = \hat{I}_{k} + X_{k} \times \sqrt k \times \sigma_{d} $$

With \( X_{k} \propto N\left( {0,1} \right) \) is a standard Gaussian deviate.

$$ Prob\left( {I_{k} \ge 0} \right) \ge \beta $$
$$ Prob\left[ {\hat{I}_{k} + X_{k} \times \sqrt k \times \sigma_{d} \ge 0} \right] \ge \beta $$
$$ Prob\left[ {\hat{I}_{k - 1} + X_{k} \times \sqrt k \times \sigma_{d} + P_{k} - \mu_{k}^{D} \ge 0} \right] \ge \beta $$
$$ Prob\left[ {X_{k} \times \sqrt k \times \sigma_{d} \ge - \hat{I}_{k - 1} - P_{k} + \mu_{k}^{D} } \right] \ge \beta $$
$$ Prob\left[ {X_{k} \ge \frac{{ - \hat{I}_{k - 1} - P_{k} + \mu_{k}^{D} }}{{\sqrt k \times \sigma_{d} }}} \right] \ge \beta $$
$$ 1 - Prob\left[ {X_{k} \le \frac{{ - \hat{I}_{k - 1} - P_{k} + \mu_{k}^{D} }}{{\sqrt k \times \sigma_{d} }}} \right] \ge \beta $$

Assuming that \( \varphi \) is the repartition function of this variable X.

\( \varphi \) is strictly increasing, indefinitely differentiable and therefore we conclude that \( \varphi \) is invertible:

$$ 1 - \varphi \left[ {\frac{{ - \hat{I}_{k - 1} - P_{k} + \mu_{k}^{D} }}{{\sqrt k \times \sigma_{d} }}} \right] \ge \beta $$
$$ \hat{I}_{k - 1} + P_{k} - \mu_{k}^{D} \ge \sqrt k \times \sigma_{d} \times \varphi^{ - 1} \left( \beta \right) $$
$$ P_{k} \ge \sqrt k \times \sigma_{d} \times \varphi^{ - 1} \left( \beta \right) + \mu_{k}^{D} - \hat{I}_{k - 1}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajej, Z., Rezg, N. & Askri, T. Joint optimization of capacity, production and maintenance planning of leased machines. J Intell Manuf 31, 351–374 (2020). https://doi.org/10.1007/s10845-018-1450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1450-7

Keywords

Navigation