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Abstract
This paper presents a new systematic approach to the optimization of both design and manufacturing variables across a multi-
step production process. The approach assumes a generic manufacturing process in which an initial near net shape (NNS) 
process is followed by a limited number of finishing operations. In this context the optimisation problem becomes a multi-
variable problem in which the aim is to optimize by minimizing cost (or time) and improving technological performances 
(e.g. turning force). To enable such computation a methodology, named conditional design optimization (CoDeO) is proposed 
which allows the modelling and simultaneous optimization of process parameters and product design (geometric variables), 
using single or multi-criteria optimization strategies. After investigation of CoDeO’s requirements, evolutionary algorithms, 
in particular Genetic Algorithms, are identified as the most suitable for overall NNS manufacturing chain optimization The 
CoDeO methodology is tested using an industrial case study that details a process chain composed of casting and machin-
ing processes. For the specific case study presented the optimized process resulted in cost savings of 22% (corresponding to 
equivalent machining time savings) and a 10% component weight reduction.

Keywords Manufacturing optimization · Process optimization · Design optimization · Near net shape · Genetic algorithm · 
Machining parameters optimization

Introduction

The global desire to reduce energy, material consumption 
and emissions continuously push companies to adopt manu-
facturing technologies that reduce wastages and maintain 
productivity. In response to these drivers near net shape 
(NNS) manufacturing processes have emerged as a power-
ful tool for achieving such savings.

NNS manufacturing is a relative, rather than absolute, 
propriety of a process chain that minimizes raw material 
utilization and finishing machining operations (Altan and 
Allen 1990) in comparison with the alternatives (Marini 
et al. 2017a).

Optimization of such processes must take a broad view 
and control both process parameters and design variables in 
order to minimize the raw material utilization and the time 

of machining operations. The determination of optimal, or 
acceptable near-optimal, solutions by a suitable optimization 
technique has been recognized as critical but difficult task 
for researchers and practitioners (Mukherjee and Ray 2006).

However, in industrial enterprises and academic litera-
ture, product design and manufacturing process optimiza-
tion are linked by predominately qualitative “ Design-for-X” 
methodologies rather than the explicit setting of dimensions 
and process variables. In contrast, this paper presents a 
“offline” methodology for selecting the best configuration 
of design and process parameters in a NNS supply chain, 
which integrates both product and process design.

Aim and objectives

The main aim of the NNS optimization approach proposed 
here is to minimize cost (or time) and improve technologi-
cal performances (e.g. minimizing turning force) through 
systematic variation of product design and manufacturing 
process parameters.

The aim gives rise to two objectives: 
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1. Define an optimization methodology
2. Quantify benefits by implement it on a case study

The proposed methodology, known as conditional design 
optimization (CoDeO), is limited to a NNS manufacturing 
chain: where, a NNS chain is composed of a primary shap-
ing process and a limited number of machining steps.

Methodology

In other contexts the idea of concurrent optimization 
between process parameters, manufacturing systems and 
design have been explored using different methodologies.

In mechatronic, quantitative approaches have been 
adopted for developing “Design for Control” methodolo-
gies for concurrent optimization. Authors, such as Bi and 
Zhang (2001), Li et al. (2001), Rampersad (1995) and Ouy-
ang et al. (2004), develop concurrent mathematical models 
able to control robot mechanics and concurrently optimize 
robot dynamics and product design. In comparison to these 
approaches, an “online” (i.e. real-time) process and product 
optimization of flexible systems is beyond the scope of this 
paper.

Elsewhere concurrent optimization methods have been 
extended to applications in operations management and 
management science. Qualitative and quantitative method-
ologies, such as Zhang et al. (2019) and Ha and Porteus 
(1995), have been developed for modelling the links between 
manufacturing and design operations, allowing their opti-
mal scheduling and design. However, such a systemic and 
holistic managerial view of the enterprise systems (Zhang 
and Wang 2016; Giachetti 1998) is beyond of the scope of 
this work.

In the context of NNS manufacturing, the machining 
steps gives an opportunity to formulate a generic approach 
to optimize NNS processes in accordance with production 
requirements and processes dynamics. In the previous inves-
tigations, NNS processes have been investigated on case-by-
case basis, for example as in Gupta (2019).

Product design variation is limited by design constraints 
and working conditions, while process parameters are lim-
ited by technological feasibility and consequently strictly 
process dependant. Understanding their correlations across 
the process chain is fundamental for a holistic optimization 
of both process and product.

Roadmap

The next section reviews the literature on both numerical and 
design optimization. After the literature survey, the problem 
formulation is defined (section “Concurrent optimization of 
near net shape processes”) and the proposed methodology 
(illustrated by a validation case study) is presented. The case 

study (section “Case study”) requires optimisation of a blank 
(produced by centrifugal casting) and finishing machining 
steps (done by turning). To optimize the turning process, the 
literature is also reviewed to identify viable optimization’s 
algorithm settings. Section “Case study results” presents the 
case study results, which suggest an overall cost saving of 
22%. Finally, section “Discussion” discusses the limitations 
of the CoDeO methodology before section “Conclusions” 
draws some conclusions.

Literature survey: process and product 
design optimization for manufacturing 
processes

Process optimization is a trade-off between maximizing 
the time performances and the process by considering the 
process dynamics. For this reason, the optimization model 
needs to take into consideration the process mechanics. In 
the literature, researchers introduce process models (e.g. in 
turning process: turning power, cutting force, obtainable 
roughness equations) into optimization algorithm in different 
ways: using these multi-variable equations (that often take 
the form of non-linear functions) as an objective function 
itself (i.e. having a multi-criteria optimization and therefore 
a Pareto solution), as non-linear constraints or in a combina-
tion of the previous.

The modelling of NNS processes depends on the opti-
mization algorithm selected. In a multi-variable and multi-
criteria optimization, that NNS methods require, heuristics 
can be generally defined as search techniques that are able to 
provide, among several alternatives, the most effective solu-
tion for achieving a certain goal. The search based algorithm 
provides a rule, or set of rules, for identifying an acceptable 
solution, or solutions, at a certain (or acceptable) compu-
tational cost. Heuristic-based search techniques find viable 
application cases whenever conventional techniques fail to 
achieve results or their computational cost is too high (e.g. 
a high dimensional search space with several local optima). 
They have been widely used for combinatorial process opti-
mization, providing near-optimal solution, or solutions. In 
these cases, researchers and practitioners prefer alternative 
cost effective near-optimal (or approximate) solution(s) 
rather than exact ones, as it may be extremely difficult to find 
the precise, optimal point in higher dimension, and multi-
modal search space (Mukherjee and Ray 2006).

Furthermore, optimization problem complexity has 
increased as the resolution of process measurement method 
have also improved. The availability of better measurement 
technology has resulted in discrete and continuous search 
spaces with multi-modal, differentiable as well as non-dif-
ferentiable, objective functions or responses.
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The next section briefly reviews the main computational 
approaches researchers have adopted for multi-variable 
optimization in the NNS manufacturing and, generally, in 
primary shaping and machining process optimization. Gen-
erally, the different approaches to process optimization can 
be classified as conventional and non-conventional. While 
conventional techniques provide a local optimal solution, 
non-conventional techniques, which are based on extrinsic 
models or objective functions, are only approximations that 
aim to provide near-optimal condition. Conventional tech-
niques can be classified in two categories: experimental and 
iterative mathematical search techniques. The first includes 
statistical design of experiment (e.g. Taguchi method) and 
response surface design methodology (RSM). On the other 
hand, iterative mathematical search techniques include lin-
ear programming (LP), non-linear programming (NLP), 
and dynamic programming (DP) algorithms. Non-conven-
tional techniques include the meta-heuristic search based 
algorithm. Three main types of metaheuristic search based 
algorithm are applied in process parameters optimization: 
genetic algorithm (GA), simulated annealing (SA), and tabu 
search (TS).

Evolutionary algorithms have been found particularity 
effective in multi-objective optimization (Zitzler et al. 2000; 
Fonseca and Fleming 1995; Srinivas and Deb 1994; Bäck 
and Schwefel 1993) and, in particular, in manufacturing sec-
tor (Pierreval and Tautou 1997; Fonseca and Fleming 1998).

In the literature, evolutionary algorithms have been 
applied to the optimization of several different production 
systems and manufacturing processes. For example, evo-
lutionary algorithms have been applied to optimize the 
performances of production (e.g. Aydoğan et al. 2019) and 
assembly lines (e.g. Minghai et al. 2019; Saif et al. 2019). 
Optimization techniques have also been widely applied to 
scheduling manufacturing problems, for example for taking 
into account random events (Fleury et al. 1999).

In particular, several authors apply and modify GAs for 
optimising conventional and non-conventional machining 
process. For example, general multi-criteria approaches are 
developed and used for optimizing turning, wire cutting and 
laser cutting by Rao et al. (2018). Dedicated evolutionary 
algorithms are developed and tested on specific processes 
such as water-jet (Rao et al. 2019) or grinding (Liu et al. 
2019).

Evolutionary algorithms have been used for concur-
rently optimizing the product design and the correspondent 
manufacturing cost. In particular, authors ,such as Ramesh 
et al. (2009), Al-Ansary and Deiab (1997) and Huang et al. 
(2005), focus on the optimal allocation of dimensional tol-
erances for product cost minimization using GAs and other 
evolutionary methods.

Several authors use evolutionary techniques for “on-line” 
process optimization. For example, Del Prete et al. (2019) 

use genetic programming for maximizing turning produc-
tivity (maximising removal rate) and reducing defect rate. 
Liu et al. (2019) compare Taguchi approach to non-linear 
methods in the context of on-line process control of injec-
tion moulding, assessing the superiority in performances 
of the latter. Similarly, Zainal et al. (2016) compare swarm 
optimization with Taguchi techniques for optimizing mill-
ing process.

Evolutionary optimization techniques have also been 
applied to design optimization in the early conceptual design 
phase, as in Burnell et al. (1991), Liu et al. (2019) and Lee 
and Wang (1992).

Metaheuristic algorithms for manufacturing process 
and design optimization: application to near net 
shape processes

Regarding NNS process, few authors attempt to associate 
the NNS concept to process chain optimization using evo-
lutionary algorithms. Generally, the different investigation 
approaches are related to the process to be investigated. 
For example, Caporalli et al. (1998) investigate hot forging 
process, using numerical and experimental methodologies. 
Investigating two intercepting manufacturing lines (one 
producing a forging tool, another producing a workpiece 
though machining, annealing and forging). Their optimiza-
tion model minimized the flow stress of every hot forging 
operation, using FEM simulation. Denkena et al. (2011) 
develop analytical and derived experimental models, mini-
mizing a global cost function. The developed expression of 
the product quality is dependent on the tolerances achiev-
able in machining and forging process. This formula is used 
concurrently with the total cost and leading time formulas 
for a multi-criteria optimization using Genetic Algorithms. 
Davidson et al. (2008) optimize a flow forming process using 
experimental trials, maximizing process quality (achievable 
tolerances) and optimizing microstructure using a Tagu-
chi array (Design of Experiments). The optimization tar-
get is related to the process dynamics in the experimental 
approach. Sardinas et al. (2006) use a micro GA for optimiz-
ing a turning process by two objective functions: turning 
time and tool life. The algorithm uses two different popula-
tions: one static and one dynamic. The first is processed with 
the classic GA operators, creating the second population.

In an effort to improve the resolution and accuracy of 
machining process researchers have reported the applica-
tion of many different computational models and algorithms. 
The optimization of process parameters is the key for eco-
nomically efficient machining operations (Khan et al. 1997) 
because metal cutting is still a significant step in most manu-
facturing processes.

However these established processes need to respond 
to the increasing demand for quality, and so consequently 
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optimization methods in metal cutting are vital tool for con-
tinuous improvement of process output quality. But find-
ing optimal machining conditions is a complex problem 
and consequently metaheuristic searches (particularly the 
evolutionary algorithms) have been developed as “problem 
specific” solver, guiding, or modifying heuristics to produce 
optimal solutions. For example, Mukherjee and Ray (2006) 
provide the general applications advantages and disadvan-
tages of evolutionary algorithm usage. Khan et al. (1997)) 
benchmark evolutionary algorithms, in particular GA and 
SA and gradients method, using different test function. GA 
and SA show consistency in converging to the global min-
ima and are not influenced by the dimensions of the input 
vectors (i.e. variables number), although they increase the 
convergence time in comparison with differential methods. 
Regarding the differences between the specific models, SA 
gives high precision and the code can be run longer to get 
higher precision. For GA, the precision is proportional and 
limited by the precision used for representing each variable 
(i.e. number of bits). GA and SA advantages over gradi-
ent methods include the higher total number of function 
and constrains evaluable. Although, the higher functions 
evaluations per run (i.e. giving a high convergence time) 
is a disadvantage that make them unsuitable for real-time 
optimization.

In conclusion, GAs are most frequently used for single 
and multi-objective optimization of large (i.e. high number 
of variables) and complex problems (Deb 2001), because 
they:

– Do not require continuous or convex design space (as 
non-gradient based)

– Are able to explore large search space and have a high 
chance of avoiding local optima (due to is probabilistic 
and not deterministic nature)

– Provide multiple near-optimal solution.

– Are able to solve multiple objectives and non-linear 
response function problems, in both discrete and con-
tinuous cases.

Therefore, the GA is generally preferred when near-opti-
mal condition(s) rather than exact optimal conditions are 
cost effective and acceptable for use by the manufacturers 
(Mukherjee and Ray 2006).

Concurrent optimization of near net shape 
processes

Problem formulation A generic NNS manufacturing chain 
can be modelled as a primary shaping process followed by 
a number of machining steps (Fig. 1). The primary shap-
ing component can be either a forming, casting or additive 
layer manufacturing process. The industrial need is to have 
a simultaneous optimization of design and process param-
eters, achieving:

– Product geometric requirements (e.g. assembly con-
straints)

– Quantitative product requirements (e.g. surface rough-
ness, component weight)

– Process quality (e.g. defect rate, tool wear, forging force)
– Production targets (e.g. product cost, production rate, 

lead-time)

The process parameters to consider are:

– Primary shaping process variables ( v1, v2,… , vn)
– Machining process var iables ( m11,m12,… ,m1k 

m21,m22,… ,m2k mN1,mN2,… ,mNk)

Fig. 1  Near net shape process optimization: schematic of variables and problem formulation
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where N is the number of machining operations required, 
n is the number of near net shape process variables, k is 
the number of machining variables. Referring to Fig. 1, the 
design variables to consider are

– Billet, Preform or Raw Material Volume ( db1 , db2 … dbV)
– Near net shaped Component ( ds1 , ds2 … dsV)
– Intermediate machined geometries or Semi-finished com-

ponent ( di11 , di12 … di1V ;di21 , di22 … di2V ;diN1 , diN2 … diNV)
– Finished ( df1 , df2 … dfV)

where V is the number of design variables.
Conditional design optimization (CoDeO) Figure 2 shows 

a schematic representation of the CoDeO methodology. The 
optimization method is associated with the primary shaping 
and machining process models. In general, for optimizing 
the product design and process parameters, it is necessary 
to have a cost model which is a function of both. The models 
needed for this optimization are: 

1. Cost model of the primary shaping process, dependent 
on process parameters (e.g. forging force or intermediate 

geometry) and/or product design variables (e.g. diam-
eter)

2. Cost model of the machining process dependent on pro-
cess parameters and/or product design variables

3. Support models (i.e. linear or non-linear) for the primary 
shaping or machining processes (e.g. production rate tar-
get or turning force constraint)

The presence of support models is dependent on the 
nature of the processes, production targets and product 
requirements. A model can investigate the product qual-
ity (i.e. if it can be quantified by a function) or represent 
the technological aspect (e.g. forging force) to optimize (or 
keep within acceptable limits). By adding these as objec-
tives function, the optimization changes from a single to 
a multi-criteria process. If these criteria can be added into 
other forms (e.g. non-linear constraints), the optimization 
can retain its single scope and optimising the cost by giving 
boundaries to the variable optimization.

These models allow the exploration of iterative system-
atic product and process design variation that can be opti-
mized concurrently by minimizing the process cost (as main 

Fig. 2  Schematic of conditional design optimization (CoDeO) methodology



616 Journal of Intelligent Manufacturing (2021) 32:611–631

1 3

target),process technological features and product/produc-
tion targets.

Referring to the Fig. 1 schematic, a machining process 
(milling or tuning) parameters can generally be synthesized 
in Eq. (1)

where, a is the cutting depth, vc is the cutting speed F is the 
feed rate, N is number of passes.

Using geometrical constrains and machining parameters 
some of the intermediate machining geometries can be writ-
ten as a function of the final and primary shaped geometries, 
by the number of machining steps (Eq. (2)).

This allows the number of machining step N to be expressed 
as a function of the design variables.

Expressing the machining steps number as in Eq. (2), 
the total machining time TM , and, consequently, the total 
machining cost CM , can be written as Eq. (3).

In case of single criteria optimization, the objective function 
OBJi can be written as in Eq. (4)

where, cM is the hourly machining cost and CNNS the cost 
model for the NNS process. In case of multi-criteria opti-
mization, the objective functions can be formulated as in 
Eq. (5)

The cost model for the NNS process CNNS needs to be built 
individually, depending on the process nature and data 
available. Generally the cost is function of input and output 
geometries and process parameters.

Marini et al. (2017a) present a framework for technological 
and economic models building for near net shape process.

Non-linear constrains can be added to the objective func-
tions, limiting the feasible solutions to those which match 
process limit capabilities (e.g. turning power constraint), 

(1)
m11,m12,… ,m1k;m21,m22,… ,m2k;mN1,mN2,… ,mNk = a, vc,F,N

(2)

di11 , di12 … di1N ;

di21 , di22 … di2N ;

diV1 , diV2 … diVN = f (ds1 , ds2 … dsV ;

df1 , df2 … dfV ;a) = N

(3)TM = f (ds1 , ds2 … dsV ;df1 , df2 … dfV ;a, vc,F)

(4)
{
OBJ1 = CNNS + CM = CNNS + TMcM

(5)

⎧⎪⎨⎪⎩

OBJ1 = CNNS + CM

OBJ2 = f (v1, v2,… , vn)

OBJ3 = f (a, vc,F)

(6)CNNS = f (v1, v2,… , vn;db1 , db2 … dbV ;ds1 , ds2 … dsV )

quality targets (e.g. surface roughness constrain or product 
weight) and production targets (e.g. machining removal 
rate).

NNS process variables and models are dependent on the 
process nature, which could be established from literature 
or experimental investigation.

The design variables selection is similarly case depend-
ant and can be influenced by several factors. The main con-
straints are usually geometrical or connected to key features 
for influencing component functionality or manufacturing 
costs however their definition is difficult to standardize.

The machining process variables are usually limited to 
the feed rate, cutting speed and cutting depth.

Case study

CoDeO has been applied to the optimization of the manu-
facturing of a control valve’s cage, a complex component 
manufactured from 420 Stainless Steel. The schematic of 
a manufacturing chain for producing valve’s component is 
showed in Fig. 3.

A centrifugal casting process and turning process are 
used for making the component. For brevity of presentation, 
the finishing turning and drilling processes are excluded 
from the optimization, although the finishing allowance 
is used for modeling the machining process (described in 
“Appendix B”).

Variables definition: search space setting The optimiza-
tion considers processes cost so consequently these need to 
be modelled into equations, optimizing both process param-
eters and design variables Fig. 4 displays the variables to be 
optimized and their collocation in the manufacturing chain 
and final/semi-finished products designs. Nine variables 
(defined in Table 1) have been considered for the optimiza-
tion problem, as in Fig. 4: four process parameters and five 
design variables.

Using the centrifugal casting process parameters selec-
tion and modelling described in Marini and Corney (2017) 
and included in the cost equation (9), the diameter of the 
centrifugal castings internal cavity ( IDm ) is set in accordance 
to mould available and minimum required molten material 
for spinning. The final component dimensional variables 
( OD, ID, ODb, lf , Lf  ) are informed by current assembly 
constraints and design targets. The cutting speed ( vc ), depth 
of cut (a) and feed rate(F) ranges are defined using (Kalpa-
kjian and Schimd 2009) for medium and high C steels and 
ceramic coated carbide tool. This definitions include the val-
ues currently employed in the manufacturing process. The 
machine tool spindle speed (n) is also used as a variable: its 
range derived from the cutting speed ranges and the mini-
mum and maximum diameters.
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To determine appropriate GA functions to support the 
optimization the literature was reviewed.

Literature survey: GA functions and settings for turing 
process optimization Many different applications for turn-
ing process optimization through metaheuristic search based 
algorithms have been reported in literature, in particular 
for GA. Cus and Balic (2003) use a GA search base algo-
rithm for optimizing the turning process of steel. Saravanan 
et al. (2003) use a lower number of variables (i.e. feed rate 
and cutting speed) for testing turning process optimization 
through GA and SA. Amiolemhen and Ibhadode (2004) dif-
ferentiate between roughing and finishing operations, intro-
ducing different unit production cost fitness function and use 
different constrains for every analysed operation. Sardinas 
et al. (2006) use a micro GA for optimizing a turning process 
by two objective functions: turning time and tool life. The 

Fig. 3  Valve cage manufacturing process chain model for optimization

Table 1  Variable ranges Variable Min Max

OD (mm) 480 500
ID (mm) 430 410
ODb (mm) 460 480
Lf  (mm) 415 425
lf  (mm) 50 70
a (mm) 2.5 7.6
n (RPM) 80 261
F (mm) 0.15 0.75
IDm (mm) 340 370

Fig. 4  Valve cage manufactur-
ing optimization: schematic of 
process parameters and design 
variables
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first is processes with the classic GA operators, creating the 
second. This new individuals are added to the static ones in 
the next iteration, meanwhile the other population remain 
unchanged, even if they violate the constraints (measured 
by the violation grade by an unfeasibility index). Yildiz and 
Ozturk (2006) propose an integration of Taguchi robust 
design optimization (i.e. using S/N ratio and ANOVA) and 
GA. The authors test the computational power of single and 
multi-criteria optimization through this hybrid algorithm, 
comparing it with previous hybrid GA in literature. Yang 
and Natarajan (2010) compare a multi-objective differen-
tial evolution algorithm and non-dominated sorting genetic 
algorithm for the turning optimization of a particular tool 
(steel and tungsten carbide). The differential evolution (DE) 
algorithm acts on GA by narrowing down its search space 
during each step. D’Addona and Teti (2013) use the MAT-
LAB GA optimization toolbox for optimizing the turning 
process of cast steel blank with an HSS tool, comparing 
two crossover operators (single point and two-points) and 
mutation coefficients.

Tables 2 and 3 summarize the approaches proposed for 
optimization of single pass turning process. Most of the 
authors use only the main turning process parameters as 
variables (feed rate, cutting speed and depth of cut). Simi-
larly, all the authors used the unit production cost as fitness 

function (or as a part of it). Similar settings are applied also 
in the crossover and mutation fractions. All the authors 
include linear and non-linear constraints for limiting the 
individuals’ feasibility.

For multi-passes turning, the researchers tend to use 
iterative cycles, optimizing each pass individually, usually, 
having every pass interacting with the previous and next 
ones. So essentially, the authors are applying single objec-
tive optimization, using the unit process cost (Onwubolu 
and Kumalo 2001; Yildiz 2013; Alberti and Perrone 1999; 
Wang et al. 2002) or customized linear function combining 
tool life and cost (Schrader 2003).

Objective functions Having determined that the multi-
criteria optimization method will be a GA (section “Concur-
rent optimization of near net shape processes”), two objec-
tive functions must be defined. The first objective function 
(Eq. (7)) is the total cost (i.e. including centrifugal casting 
and machining cost). The second fitness function is the turn-
ing force (Eq. (8)), developed by Sardinas et al. (2006). The 
two functions are: 

1. Total cost model 

(7)FF1 = CCCB +
(
Ttu

)
cm

Table 2  Summary of GA literature on turning process (Part I)

GA characteristics Cus and Balic (2003) Saravanan et al. (2003) Amiolemhen and Ibhadode (2004)

Fitness function(s) number One One One
Minimization objective(s) Exponential function (combining 

machining removal rate, operation 
cost, surface roughness)

Unit production cost Unit production cost

Minimization function(s) Type Analytical Analytical Analytical
Variables number 3 2 3
Variables Depth of cut (a), feed rate (F), cut-

ting speed (v)
Feed rate (F), cutting speed (v) Depth of cut (d), feed rate (F), cut-

ting speed (v)
Constrain functions (linear-nonLin-

ear functions)
Cutting force (An), cutting power 

(An)
Cutting force (An), cutting 

power (An), tool tip tem-
perature

Tool life (An), cutting force (An), 
cutting power (An) , Chip-tool 
interface temperature (An), 
dimensional accuracy (An), cut-
ting region stability (An), surface 
finish (An)

Initial population: coding type Not known Binary coding (bit string) Binary coding (bit string)
Initial population: size (number of 

individuals)
Not known 20 20

Initial population creation function Not known Random generation Random generation
Reproduction: selection function Not known Rank order Roulette wheel
Reproduction: elite count (fraction) Not known None None
Crossover: function Not known One-point operator One-point operator
Crossover: fraction Not known 0.8 0.8
Mutation: fraction Not known 0.01 0.01
Supplementary applied optimiza-

tion techniques
None Simulated annealing None
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2. Turning cutting force, as in Sardinas et al. (2006) 

Centrifugal casting model The first part of Eq. (7) refers to 
the centrifugal casting blank cost ( CCCB ), which is defined by 
the Eq. (9)

With, ODm the mould outer diameter and Lf  mould length. 
The selection of ODm and IDm from the target casting dimen-
sion, and the analytical relationship with IDm are detailed 
in Marini and Corney (2017).Kc and Kv constants value, 

(8)

FF2 = FT =
6.56

(
10

3
)
F0.917a1.1

vc
0.286

=
6.56

(
10

3
)
F0.917a1.1

(
OD n 3.14

1000

)0.286

(9)
CCCB =

((
OD2

m
− ID2

m

)
Kc

−
(
OD2

CCB
− ID2

CCB

)
Kv

)
�m

Lf

4
�106

depending on the centrifugal casting operation, considered 
5.56 and 3.17 respectively for the selected material and 
mould external diameter (Marini and Corney 2017).

Turning model The second part of Eq. (7) refers turning 
cost, which is proportional to the turning time ( tiT ) and the 
cost per hour ( cm ). The total turning cost is dependent on the 
machining strategy, showed in Fig. 5). The turning process 
is divided into three main operations, which correspond to 
three different machining time per pass ( TTu ). The total turn-
ing time can be written as:

With, tEXT
 , external turning time; tEXbT

 : external bottom turn-
ing time; tINT

 , internal turning time (Fig. 5).
The turning process has been analysed as a helicoidal 

motion, resembling the cutting trajectory, instead of a linear 
one (i.e. classic turning formulation), resembling the tool 
motion. The aim of this new formulation is to gather the 
process parameters, diameters and number of passes in a 

(10)TTu = tINT
+ tEXT

+ tEXbT

Table 3  Summary of GA literature on turning process (Part II)

GA characteristics Yildiz and Ozturk (2006) Sardinas et al. (2006) Yang and Natarajan (2010) D’Addona and Teti (2013)

Fitness function(s) number One (two) Two One One
Minimization objective(s) Unit Production Cost Unit production time, tool 

life
Linear function Unit production time

Minimization function(s) 
type

Analytical Cost (An), tool life (Ex) Machining removal rate, 
(An), Tool wear (Ex)

Analytical

Variables number 5 3 3 3
Variables Depth of cut , feed rate , 

cutting speed, number of 
rough cuts

Depth of cut (a), feed rate 
(F), cutting speed (v)

Depth of cut (a), feed rate 
(F), cutting speed (v)

Depth of cut (a), feed rate 
(F), cutting speed (v)

Constrain functions (linear-
nonLinear functions)

Cutting force (An), tool-
life (An), cutting region 
stability (An), Surface 
finish (An) [for both 
finishing and roughing]

Cutting force (Ex), cutting 
power (Ex), tool life 
(Ex), surface finish (An)

Surface roughness 
(Ex), cutting zone 
temperature(Ex)

Cutting force (An), cutting 
power (An), tool life 
(An), surface finish (An)

Initial population: coding 
type

Binary coding (bit string) Binary coding (bit string) Binary coding (bit string) Binary coding (bit string)

Initial population: size 
(number of individuals)

80 500 static (10 dynamic) 100 20–100

Initial population creation 
function

Random generation Random generation Random generation Random generation

Reproduction: selection 
function

Unknown Tournament Selection Tournament selection MATLAB default (stochas-
tic uniform)

Reproduction: elite count 
(fraction)

None 0.25 Adaptable (DE) MATLAB default 
(0.2*Population size)

Crossover: function Unknown Two-points operator Ranking (DE) Single point (two-points) 
operator

Crossover: fraction 0.9 Not Known 0.9 0.8
Mutation: fraction 0.5 0.0001 0.1 0.1
Supplementary applied 

optimization techniques
Taguchi robust param-

eter design (S/N ratio, 
ANOVA)

Dynamic GA approach 
(micro-GA)

Differential evolution (DE) 
algorithm

None
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single formulation, for a single iteration optimization. The 
new formulation results equivalent to classic formulation. 
The derivation of the turning time formula is showed in 
“Appendix A”.The generic helix turning time can be writ-
ten as in Eq. 11.

In this way, the model takes into consideration the turning 
process dynamics when optimizing the process parameters 
and the design variables. The solution is consequently a 
trade-off between process time minimization (thus turning 
cost) and the cutting force minimization.

Non-linear constraints According to the literature, non-
linear constrains have been add to the GA, limiting the 
feasible individuals to matching the turning process limit 
capabilities (i.e. turning power), quality targets (i.e. surface 
roughness) and production targets (machining removal rate). 
Turning power (Eq. (12), used in Sardinas et al. (2006); Cus 
and Balic (2003); Saravanan et al. (2003); Amiolemhen 
and Ibhadode (2004); Yildiz (2013)) and surface roughness 
(Eq. (13), used in Sardinas et al. (2006); Amiolemhen and 
Ibhadode (2004); Yildiz (2013); D’Addona and Teti (2013); 
Yang and Natarajan (2010))are used as non-linear inequality 
constraints for the machining parameters. The machining 
removal rate constrain (Eq. (14)) ensure the required produc-
tion volume by a machining parameters feasible setting (i.e. 
previous constraints and the “traded-off” by the turning force 
fitness function). The non-linear constraints are showed as 
follows. 

1. Turning power ( WTu ) 

 With, maximum turning Power ( WMax ) of 82 kW, cor-
respondent to the target machine capabilities

2. Surface roughness ( RaTu ) 

(11)tT =

N�
i=1

ti =
60NL

n

���� 1 + �2
∑N

i=1
Di

F2 + �2
∑N

i=1
Di

(12)WTu =
(
n OD

3.14

1000

)
a F

kc

60 ∗ 10
3
< WMax

 With, maximum Roughness ( RaMax ) of 12.4 �m , cor-
respondent to the target component roughness.

3. Machining Removal Rate (MRR) 

 With, minimum machining removal rate higher 
( MRRMin ) higher than the current one ( 1.39 105 mm3∕min

).
The GA settings are summarized in Table 4

Case study results

The two objective functions (Equations (7) and (8)) are 
concurrent and the solution form a Pareto frontier. Accord-
ingly to the machining parameters increase, the cutting force 
increase, remaining into feasible ranges. The surface rough-
ness improvements cause the turning power to increase. The 
largest improvements are seen in the machining removal 
rate and, so, the machining time and cost decreases as a 
consequence.

Regarding the optimized variables, it is possible to notice 
a general reduction of the final dimensions, with the excep-
tion of the bottom section length, which increases. The 
machining parameters can be set higher than those cur-
rently applied ones (except from the feed rate that remain-
ing unchanged). The following observations can be made 

1. Design parameters vary in the first generations before 
converging over an optimal set of variables (constant for 
all the last generation individuals).

2. Casting process parameter behave similarly to the design 
parameters (connected by geometrical relationships).

3. Feed rate reach an optimal constant value.
4. Depth of cut and spindle speed vary in every solution.

(13)RaTu =

(
F2

8rTN

)
1000 < RaMax

(14)MRR = 𝜋 OD n Fa > MRRMin

Fig. 5  Turning strategy sche-
matic: external turning zone 
(red); external bottom section 
turning (yellow), internal turn-
ing (green) (Color figure online)
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5. Total cost varies and remain coherent with current total 
cost

6. Cutting force and turning power vary congruently with 
machining parameters

7. Surface roughness varies with the machining param-
eters, satisfying the target requirements.

8. Machining removal rate varies with the machining 
parameters, although it remains sensibly higher than the 
current rate (average of 5.28 105 mm3∕min).

9. Similarly, machining time varies with machining param-
eters, remaining lower than current value (75 min on 
average).

Tables 5 and 6 show the GA results, displaying optimized 
set of variables (fittest individuals) and resulting con-
straints, objectives functions and performances. Consid-
ering the average results of the optimal variable sets, the 
optimized geometry and process parameters adoption show 
an improvement in performances. Optimized machining 
parameters gives up to a 9.5 times higher removal rate. 
Using centrifugal cast blank, the machining time decreases 
between 8.3% and 21.6%. The latter process configuration 
has been applied by the manufacturers and resulted in a 
cost saving of 22% (The Weir Group PLC 2015).

Considering the selected configuration (Table  7), 
the improvement of process performances (i.e. interac-
tion between process parameters and design variables) 
combined with the adoption of optimal design variables 
resulted in a final weight reduction of 10%. This 19 kg 
material wastage reduction resulted in an estimated 2.8 
ton scrap reduction per year (The Weir Group PLC 2015).

Discussion

Many reported NNS analytical approaches aim to optimize 
cost (Denkena et al. 2011; Sardinas et al. 2006), while the 
empirical experimental approaches tend to maximize pro-
cess quality (Caporalli et al. 1998; Davidson et al. 2008). 
CoDeO optimize concurrently the manufacturing chain’s 
cost and process feasibility, depending on analysed pro-
cess characteristics and global cost model. For example, 
turning force has been used as trade-off (i.e. Pareto opti-
mization) for the multi-criteria optimization of turning 
process using Genetic Algorithm. Similarly to Sardinas 
et al. (2006), The minimization of turning force makes the 
turning operation more feasible, as the minimization of 
costs tended to increase the machining parameters.

CoDeO is not able to use tool and equipment as design 
variable (unlike Caporalli et al. 1998’s expert system that 
optimize the forming die shape and characteristics). On the 
other hand, CoDeO can optimize simultaneously process 
parameters and design variables.

In contrast with other NNS approaches (Caporalli et al. 
1998; Denkena et al. 2011), CoDeO optimization can be 
adapted to different NNS processes.

In comparison with other concurrent optimization 
approaches, CoDeO achieves similar optimization targets 
to the methodologies used for robotic systems (Bi and 
Zhang 2001; Li et al. 2001; Rampersad 1995; Ouyang et al. 
2004) in terms of process parameters and design (both 
subject to design constraints). CoDeO is not an “offline” 
methodology and its scope is limited to the concurrent 

Table 4  GA settings
Fitness functions number Two (multi-objective optimization)
Fitness parameter(s) Unit production cost (FFI), cutting force (FFII)
Coding type Binary coding (bit string)
Variables number 9
Variables Centrifugal casting parameters: Casting mould internal diameter

Turning parameters: feed rate, cutting speed, depth of cut
Product design variables: outer diameter, outer bottom section 

diameter, internal diameter, bottom section length, total length
Non-linear constraints Turning power, surface roughness, machining removal rate
Population Size (number of individuals): 100

Creation function: random generation
Selection function: tournament selection

Reproduction Elite count: 0.05% population size
Function: one-point operator

Crossover Function: scattered crossover
Fraction: 0.8

Mutation Function: adaptive feasible mutation
Fraction: 0.01

Termination criteria Maximum generations number: 100
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optimization of the product design and process parameters 
of NNS manufacturing chains. In order words it is unable 
to influence the manufacturing control system (“on-line”). 
While the Design for Control methodologies are designed 
for the flexible manufacturing systems, CoDeO application 
is limited to NNS processes. However, CoDeO is able to 
consider a broader range of primary shaping processes 
(from sand casting to additive manufacturing) and different 
modelling methods (e.g. experimentally derived models).

Although CoDeO has flexibility in the manufacturing 
processes and product designs considered. Its search space 
is limited in comparison to optimization methods that inte-
grate both design and operations management (Zhang et al. 
2019; Ha and Porteus 1995; Zhang and Wang 2016). Other 

researchers have tried to generalize the modelling of entire 
manufacturing ecosystem (Zhang et al. 2019). Their frame-
works take a global approach to the enterprise and supply 
chain, including the product design and operational phases.

While the resulting models are more flexible and holis-
tic, their implementation is more complex as an additional 
phase of abstraction is required for utilizing their models 
in practice. In contrast, CoDeO limits its scope to a par-
ticular manufacturing sub-system of the whole production 
system (Giachetti 1998), although modelling it with higher 
accuracy.

CoDeO can be integrated with this general methodology 
in order to provide mathematical modelling and concurrent 
optimization of NNS manufacturing chains.

Table 5  GA results: part I Results OD[mm] ID[mm] a[mm] n[RPM] F[mm/1] ODb lf Lf IDm

Individual 1 495.5 410.5 7.3 254.0 0.25 477.7 65.7 415.0 370.0
Individual 2 495.5 410.5 7.3 254.0 0.25 477.8 65.7 415.0 370.0
Individual 3 499.2 410.6 6.2 254.0 0.23 477.8 65.7 415.0 370.0
Individual 4 499.3 410.5 6.2 254.0 0.18 477.8 65.7 415.0 370.0
Individual 5 499.2 410.6 6.2 254.0 0.23 477.8 65.7 415.0 370.0
Individual 6 499.2 410.5 6.2 253.9 0.15 477.7 65.7 415.0 370.0
Individual 7 499.4 410.5 5.6 254.0 0.16 477.8 65.7 415.0 370.0
Individual 8 495.5 410.9 7.1 254.0 0.24 477.7 65.5 415.0 370.0
Individual 9 499.2 410.7 6.2 254.0 0.20 477.7 65.7 415.0 370.0
Individual 10 495.5 410.5 7.1 254.0 0.25 477.7 65.7 415.0 370.0
Individual 11 499.3 410.5 6.2 254.0 0.21 477.8 65.7 415.0 370.0
Individual 12 499.2 410.5 6.2 254.0 0.17 477.7 65.7 415.0 370.0
Individual 13 499.2 410.5 6.2 254.0 0.17 477.7 65.7 415.0 370.0
Individual 14 499.2 410.5 6.2 253.9 0.15 477.7 65.7 415.0 370.0
Individual 15 499.2 410.5 6.2 254.0 0.18 477.7 65.7 415.0 370.0
Individual 16 495.5 410.5 7.3 254.0 0.16 477.8 65.7 415.0 370.0
Individual 17 495.5 410.5 7.3 254.0 0.16 477.8 65.7 415.0 370.0
Individual 18 499.4 410.5 6.2 254.0 0.24 477.9 65.5 415.0 370.0
Individual 19 499.3 410.6 6.2 254.0 0.16 477.8 65.7 415.0 370.0
Individual 20 495.5 410.6 7.1 254.0 0.23 477.8 65.7 415.0 370.0
Individual 21 499.3 410.5 6.2 254.0 0.21 477.8 65.7 415.0 370.0
Individual 22 499.2 410.5 6.2 253.9 0.23 477.8 65.7 415.0 370.0
Individual 23 495.5 410.6 7.1 254.0 0.23 477.8 65.7 415.0 370.0
Individual 24 495.5 410.5 7.1 253.9 0.22 477.7 65.7 415.0 370.0
Individual 25 495.5 410.5 7.1 254.0 0.19 477.7 65.7 415.0 370.0
Individual 26 499.3 410.5 6.2 254.0 0.16 477.8 65.7 415.0 370.0
Individual 27 495.5 410.5 5.6 254.0 0.16 477.7 65.5 415.0 370.0
Individual 28 499.3 410.5 6.2 254.0 0.18 477.8 65.7 415.0 370.0
Individual 29 499.3 410.7 6.2 254.0 0.25 477.8 65.7 415.0 370.0
Individual 30 495.5 410.6 7.1 254.0 0.22 477.8 65.7 415.0 370.0
Individual 31 499.3 410.5 6.2 253.9 0.19 477.8 65.7 415.0 370.0
Individual 32 495.5 410.5 7.1 254.0 0.21 477.8 65.7 415.0 370.0
Individual 33 495.5 410.5 5.6 253.9 0.16 477.8 65.7 415.0 370.0
Individual 34 495.5 410.9 7.1 254.0 0.23 477.9 65.5 415.0 370.0
Individual 35 499.3 410.5 6.2 254.0 0.22 477.8 65.7 415.0 370.0



623Journal of Intelligent Manufacturing (2021) 32:611–631 

1 3

Conclusions

The application of the CoDeO methodology to the case 
study application resulted in significant saving in material 
and cost. The holistic approach over manufacturing optimi-
zation enable the creation of a reliable model for optimizing 
both economic and technological sides of a NNS manufac-
turing chain.

CoDeO can be mathematically integrated with other mod-
els for generating a holistic production models and concur-
rent optimization.

Similarly to other general models, the methodology is 
not suitable for non-expert users, because of the choices 
that need to be made during the models development and 
algorithm setting phases. Variable and targets definition 
are critical for the optimization, however, in the context 
of a global NNS process chain, the general model devel-
oped defines the key outcomes (i.e. objective functions 
definition) and limit possible search space (i.e. variable 
selection).Further details of the methodology can be found 
in Marini (2020).

Table 6  GA results: part II

Results Total cost [£] Cutting force [N] Power [kW] MRR [ mm3∕min] Rough-
ness [Ra]

Machining 
time [min]

Machining 
cost [£]

Casting 
blank cost 
[£]

Individual 1 2124 2950 25.1 7.2E+05 3.9 56 80 1302
Individual 2 2124 2930 25.0 7.1E+05 3.9 56 80 1302
Individual 3 2140 2290 19.9 5.7E+05 3.4 66 94 1302
Individual 4 2163 1772 15.1 4.3E+05 1.9 87 125 1302
Individual 5 2142 2244 19.5 5.6E+05 3.2 68 97 1302
Individual 6 2180 1538 12.9 3.7E+05 1.4 102 146 1302
Individual 7 2205 1449 12.3 3.5E+05 1.6 97 139 1302
Individual 8 2127 2797 23.8 6.8E+05 3.7 58 82 1302
Individual 9 2152 2031 17.4 5.0E+05 2.6 76 108 1302
Individual 10 2125 2879 24.6 7.0E+05 3.9 56 80 1302
Individual 11 2147 2107 18.2 5.2E+05 2.8 72 103 1302
Individual 12 2167 1713 14.5 4.1E+05 1.8 91 130 1302
Individual 13 2170 1677 14.2 4.0E+05 1.7 93 133 1302
Individual 14 2180 1538 12.9 3.7E+05 1.4 102 146 1302
Individual 15 2160 1837 15.7 4.5E+05 2.1 84 120 1302
Individual 16 2158 1932 15.8 4.5E+05 1.6 88 126 1302
Individual 17 2155 1984 16.3 4.7E+05 1.6 86 123 1302
Individual 18 2137 2376 20.7 5.9E+05 3.7 63 91 1302
Individual 19 2172 1649 13.9 4.0E+05 1.6 94 135 1302
Individual 20 2131 2640 22.3 6.4E+05 3.2 62 88 1302
Individual 21 2149 2060 17.7 5.1E+05 2.6 74 106 1302
Individual 22 2139 2325 20.2 5.8E+05 3.4 65 93 1302
Individual 23 2129 2712 23.0 6.6E+05 3.4 60 85 1302
Individual 24 2134 2517 21.2 6.1E+05 2.9 65 92 1302
Individual 25 2145 2189 18.2 5.2E+05 2.1 75 108 1302
Individual 26 2174 1613 13.6 3.9E+05 1.6 97 139 1302
Individual 27 2191 1471 12.4 3.5E+05 1.6 106 152 1302
Individual 28 2163 1780 15.1 4.3E+05 1.9 87 125 1302
Individual 29 2136 2438 21.3 6.1E+05 3.9 62 88 1302
Individual 30 2132 2586 21.8 6.2E+05 3.0 63 90 1302
Individual 31 2158 1874 16.0 4.6E+05 2.2 82 118 1302
Individual 32 2135 2480 20.9 6.0E+05 2.8 66 94 1302
Individual 33 2187 1495 12.6 3.6E+05 1.7 104 149 1302
Individual 34 2130 2690 22.8 6.5E+05 3.3 60 86 1302
Individual 35 2146 2142 18.5 5.3E+05 2.9 71 101 1302
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Appendix A: Helix‑turning formulation

This appendix details the representation of the helicoidal 
turning ar developed to support the optimization step.

In Figs. 6 and 7, the turning helix has been displayed. 
In point O, the global frame of the component is com-
posed by the axis x, y , z and the unit vectors ( i, j, k ). T is 
the point of contact of the tool. The local frame is com-
posed of three unit vectors:c , tangent to the circumfer-
ence, to which corresponds the cutting speed vector vc ; t , 
tangent to the helix trajectory, to which corresponds the 
helix speed vector vH ; a , parallel to the workpiece axis 
and coincident to the tool motion axis (liner trajectory), to 
which corresponds the feed speed vector vH.

Table 7  Current and optimized (Individual 20) geometry, process 
parameters and results (optimization objectives and constraints)

Variables, constraints and optimiza-
tion objectives

GA optimized NNS process

Geometry
OD [mm] 495 520
ID [mm] 410 400
ODb [mm] 478 492
lf  [mm] 65 55
Lf  [mm] 415 420
Process parameters
a [mm] 7.1 3.4
n [RPM] 254 100
F [mm/1] 0.25 0.23
Optimized objectives and constraints
Cutting force [N] 2640 1650
Cutting power [kW] 22.3 4.8
Machining removal rate  [mm3/min] 6.4 E+05 3.9 E+05
Surface roughness [Ra] 3.2 6.4
Machining time [min] 62 107
Material waste [kg] 116 93

Fig. 6  Turning helix model (isometric view) (Color figure online)

http://creativecommons.org/licenses/by/4.0/
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The helix equation parametric equation can be 
expressed as in (15)

With, � ∈ [0, k�] ; x, y ∈ [0, r] ; z ∈ [0, L].
The main features of the helix are: c = p

2�
 ; Helix pitch, 

p; Slope, c
p
 ; Number of turns, �T

2�
 ; Torsion, � =

c

r2+c2
 ; Cur-

vature, k = r

r2+c2
.

The velocity of a point on the helix can be written as 
(16)

Velocity vector can be written as in (17)

If the motion is uniform, it is possible to write (18)

(15)

⎧⎪⎨⎪⎩

x = rcos(�)

y = rsin(t�)

z = c�

(16)
v = vxi + vyj + vzk =

dx

dt
i +

dy

dt
j +

dz

dt
k

=
(
−r

d�

dt
sin(�)

)
i + r

d�

dt
cos(�)j + c

d�

dt
k

(17)

v = ‖v‖ t

=
�

v2
x
+ v2

y
+ v2

z
t =

�
d2�

dt2
(r

2

(sin2(�)+ cos2(�) ) + c2)t

=

�
(r2 + c2)

d�

dt
t

(18)fracd2�dt2 = 0,
d�

dt
= �

Arc Length: the total helix arc length can be derived integrat-
ing the velocity (17) as in (19) and (20)

Classic turning formulation The classic formulation use the 
following inputs:

– F, feed rate (mm/lap)
– n, spindle speed (lap/min)
– a, depth of cut (mm)
– l, working engagement (mm)

The feed velocity (21), cutting speed (22) and cutting time (23) 
classic formulations can be written as follows

Helix equivalence For the helix the speed can be written 
as (24)

(19)ds = vdt,∫
l

0

ds = ∫
t

t0

|v|dt

(20)lH = ∫
t

t0

√
(r2 + c2)

d�

dt
dt =

√
(r2 + c2)�t

t0

(21)vf = Fn

(22)vc = �Dcn

(23)tc =
l

Fn

(24)vH = lH∕tc

Fig. 7  Turning helix model (lateral view) (Color figure online)
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Having the total number of turns �T , the length (20) can be 
rewritten as (25)

Given, z = c� , with z = L , it is possible to write (26)

The cutting time tc must be the same for both the formula-
tions. Having L = l and tc =

l

Fn
 , the cutting time can be also 

written as (27)

The hypothesis tc(helix) = tc(classic) can be dimensionally 
checked as in (28)

Therefore, the helix pitch can be written as (29)

Velocity hypothesis The helix speed and the cutting and 
feed rate speed must be complementary, so (30) can be 
formulated.

Hybrid formulation In (31) the helix and classic formula-
tion are combined by substituting the vH (30) in cutting time 
equation (27), as in the (24)

With c = p

2�
 , it is possible to write (32) and finally derive 

(33)

(25)lH =

√
(r2 + c2)�T

(26)�T =
L

c
=

L

p∕2�

(27)tc =

√
(r2 + c2)

2�L

p√
(r2 + c2)�

=
2�L

p�

(28)
2�L

p�
=

L

Fn
→

[
2�L

p�

]
=

mm
mm

rad

rad

s

=
mm

mm

lap

lap

s

=
[
L

Fn

]

(29)p =
2�Fn

�
= 60F

(30)vH =
√

v2
c
+ v2

f

(31)tc =

√
(ri

2 + c2
i
)
2�Li

pi√
v2
ci
+ v2

fi

(32)

tc =

�
(r)2 +

�
Fn

�

�2
�L

Fn�
v2
c
+ v2

f

=

⎛⎜⎜⎝

L2�2

F2n2
(r2 +

F2n2

�2
)

F2n2 + 4�2r
2
n2

⎞⎟⎟⎠

1

2

=

⎛⎜⎜⎝
L2(

�2

F2n2
r2 + 1)

(n2(F)2 + 4�2r
2
)

⎞⎟⎟⎠

1

2

A dimensional check (34) shows the validity of the formula 
(33)

In conclusion, with � =
2�n

60
 and D = 2r (so D2 = 4r2 ) the 

cutting time become (34)

Appendix B: Turning model formulation

Referring to Fig. 8 it is possible to define: Finishing Diam-
eters (10 mm hypothesis)

(33)tc =
L

n

⎛⎜⎜⎝

�2

F2n2
r2 + 1

F2 + 4�2r
2

⎞⎟⎟⎠

1

2

(34)
tc =

⎡⎢⎢⎢⎣
L

n

⎛⎜⎜⎝

�2

F2n2
r2 + 1

(F)2 + �2r2

⎞⎟⎟⎠

1

2 ⎤⎥⎥⎥⎦
=

mm
1

s

⎛⎜⎜⎜⎜⎝

�
1

s

�2

mm2

mm

1

2 1

s2

+ 1

(
mm

1
)2 + mm2

⎞⎟⎟⎟⎟⎠

1

2

=
mm
1

s

�
1

mm2

� 1

2

=
mm

mm∕s
= s

(35)tc = 60
L

n

⎛
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�
�D

60 F

�2

+ 1

F2 + �2D2

⎞
⎟⎟⎟⎠

1

2

Fig. 8  External turning process scheme and nomenclature scheme 
(blue: proof machining zone; red: roughing zone; grey: finishing 
zone) (Color figure online)
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Table 8  Turning model nomenclature
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Roughing Machining Theoretical number of turns 
(Table 8; Fig. 9)

Rounded number of turns (natural number)

Proof Machined Diameters (20 mm allowances from cen-
trifugal casting blank)

For a single turning operation, the machining parameters can 
be considered as constant, so the following hypotheses result 
generally valid for the turning process parameters.

(36)ODF = OD + 10

(37)ODFb
= ODb + 10

(38)IDF = ID − 10

(39)NET
=

ODCCB − ODF

a
=

ODm − OD − 30

a

(40)NIT
=

IDF − IDCCB

a
=

ID − IDm − 30

a

(41)NEbT
=

ODF − ODFb

a
=

OD − ODb

a

(42)NE = roundup

(
ODm − OD − 30

a

)

(43)NEb
= roundup

(
ID − IDm − 30

a

)

(44)NI = roundup

(
OD − ODb

a

)

(45)ODCCB = OD + 10 + Nea = ODm − 20

(46)IDCCB = ID + 10 + Nea = IDm − 20

– ai = costant = a

– ni = costant = n

– Fi = constant = F

In addition, in all three cases, the turning length can be con-
sidered constant ( Li = cost = L ) for a single turning opera-
tion. Therefore (47) can be written

Therefore, using the turning helix formula, the total turning 
time can be written as (48)

Distinction needs to be made for the external and internal 
turning.

In external turning case(Di = ODi)

(47)
N∑
i=1

Li = NLT

(48)

tT =

N�
i=1

ti = t1 + t2 +⋯ + tN =
60L

n

���� 1 + �2D2

1

F2 + �2D2

1

+
60L

n1

���� 1 + �2D2

2

F2 + �2D2

2

+…

⋯ +
60L

n

���� 1 + �2D2

N

F2 + �2D2

N

=
60NL

n

���� 1 + �2
∑N

i=1
Di

F2 + �2
∑N

i=1
Di

Fig. 9  External turning process scheme and nomenclature scheme 
(grey: finishing zone; green: roughing zone; blue: proof machining 
zone) (Color figure online)
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Although with a = constant it becomes

The last sum can be written as

Therefore

Therefore

Similar conclusions can be drafted for the internal turning 
case ( Di = (IDi )) The general inner diameter after i-passes 
can be written as

Therefore, dually to the outer diameter case

Therefore the total external turning time formula become

With Ne = round
(

OD0−ODf

a

)

Similarly the total internal turning time

In the examined case, the total turning time can be written as

(49)ODi = OD0 − (a1 + a2 +⋯ + ai)

(50)

ODi = OD0 −
(
a + 2a + 3a +⋯ + Nia

)
= OD0 −

NiE∑
i=1

i(a)

(51)
Ne∑
i=1

i(a) =
Ne

(
Ne + 1

)
a

2

(52)ODi = OD0 −
Ne

(
Ne + 1

)
a

2

(53)
Ne∑
i=1

ODi = NeOD0 −
Ne

(
Nie

+ 1
)
a

2

(54)IDi = ID0 + (a1 + a2 +⋯ + ai)

(55)IDi = ID0 +
Ni

(
Ni + 1

)
a

2

(56)tET
=

60NeLT

n

√√√√√√√
1 + �2

(
NeOD0 −

Ne(Ne+1)a
2

)2

F2 + �2

(
NeOD0 −

Ne(Ne+1)a
2

)2

(57)tIT =
60NiL

n

√√√√√√√
1 + �2

(
NiID0 +

Ni(Ni+1)a
2

)2

F2 + �2

(
NIID +

Ni(Ni+1)a
2

)2
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