Skip to main content
Log in

Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This study proposed a deep convolutional neural network (DCNN) aided optimization (DCNNAO) method to improve the quality of deposition during the cold spray process which was simulated by molecular dynamics (MD). The idea of the DCNNAO is to extract the value of the objective function from the MD simulation snapshots directly by DCNN aided image process technique. Considering the huge memory requirement for MD result files, the main superiority of DCNNAO is to reduce the memory requirement and improve the efficiency of the optimization process by using a contour image (several hundred kilobytes) as the input instead of an MD result file (several hundred gigabytes). To complete this strategy, a Python script is written to generate required snapshots from result files automatically. Moreover, three boosted decision trees based optimization methods including surrogate optimization and heuristic algorithms are also implemented for comparison study. A detailed optimization result demonstrates that all the above methods can obtain an acceptable solution. The comparison is also given for an informed selection of them based on the trade-off between efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. (2016). Cold spraying: A materials perspective. Acta Materialia, 116, 382.

    Article  Google Scholar 

  • Badmos, O., Kopp, A., Bernthaler, T., Schneider, G. (2019). Image-based defect detection in lithium-ion battery electrode using convolutional neural networks. Journal of Intelligent Manufacturing, pp. 1–13.

  • Bae, G., Kumar, S., Yoon, S., Kang, K., Na, H., Kim, H. J., et al. (2009). Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Materialia, 57(19), 5654.

    Article  Google Scholar 

  • Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), pp. 801–818.

  • Daneshian, B., & Assadi, H. (2014). Impact behavior of intrinsically brittle nanoparticles: A molecular dynamics perspective. Journal of Thermal Spray Technology, 23(3), 541.

    Article  Google Scholar 

  • Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 50(17), 1285.

    Article  Google Scholar 

  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 580–587.

  • Gnanasekaran, B., Liu, G. R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A smoothed particle hydrodynamics (SPH) procedure for simulating cold spray process: A study using particles. Surface and Coatings Technology, 377, 124812.

    Article  Google Scholar 

  • Goel, S., Faisal, N. H., Ratia, V., Agrawal, A., & Stukowski, A. (2014). Atomistic investigation on the structure–property relationship during thermal spray nanoparticle impact. Computational Materials Science, 84, 163.

    Article  Google Scholar 

  • Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W., & Helfritch, D. (2003). Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Applied Surface Science, 219(3–4), 211.

    Article  Google Scholar 

  • Guetta, S., Berger, M. H., Borit, F., Guipont, V., Jeandin, M., Boustie, M., et al. (2009). Influence of particle velocity on adhesion of cold-sprayed splats. Journal of Thermal Spray Technology, 18(3), 331.

    Article  Google Scholar 

  • Jenkins, R., Yin, S., Aldwell, B., Meyer, M., & Lupoi, R. (2019). New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification. Journal of Materials Science & Technology, 35(3), 427.

    Article  Google Scholar 

  • Joshi, A., & James, S. (2018). Molecular dynamics simulation study of cold spray process. Journal of Manufacturing Processes, 33, 136.

    Article  Google Scholar 

  • Kumar, S., Bae, G., & Lee, C. (2009). Deposition characteristics of copper particles on roughened substrates through kinetic spraying. Applied Surface Science, 255(6), 3472.

    Article  Google Scholar 

  • Kumar, S., Bae, G., & Lee, C. (2016). Influence of substrate roughness on bonding mechanism in cold spray. Surface and Coatings Technology, 304, 592.

    Article  Google Scholar 

  • Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G. H., Cho, J. H., et al. (2020). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 31(2), 375.

    Article  Google Scholar 

  • Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2019). Automated defect inspection of LED chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 30(6), 2525.

    Article  Google Scholar 

  • Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: A meshfree particle method. Singapore: World Scientific.

    Book  Google Scholar 

  • Liu, G. R., & Quek, S. S. (2013). The finite element method: A practical course. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., & Lupoi, R. (2018). Solid-state additive manufacturing and repairing by cold spraying: A review. Journal of Materials Science & Technology, 34(3), 440.

    Article  Google Scholar 

  • Li, W. Y., Yin, S., & Wang, X. F. (2010). Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Applied Surface Science, 256(12), 3725.

    Article  Google Scholar 

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 3431–3440.

  • Manap, A., Nooririnah, O., Misran, H., Okabe, T., & Ogawa, K. (2014). Experimental and SPH study of cold spray impact between similar and dissimilar metals. Surface Engineering, 30(5), 335.

    Article  Google Scholar 

  • Omelyan, I., Mryglod, I., & Folk, R. (2002). Optimized Verlet-like algorithms for molecular dynamics simulations. Physical Review E, 65(5), 056706.

    Article  Google Scholar 

  • Papyrin, A., Kosarev, V., Klinkov, S., Alkhimov, A., & Fomin, V. M. (2006). Cold spray technology. Amsterdam: Elsevier.

    Google Scholar 

  • Pathak, S., & Saha, G. (2017). Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: A critical review. Coatings, 7(8), 122.

    Article  Google Scholar 

  • Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1.

    Article  Google Scholar 

  • Rahmati, S., & Jodoin, B. (2020). Physically based finite element modeling method to predict metallic bonding in cold spray. Journal of Thermal Spray Technology, pp. 1–19.

  • Rahmati, S., & Ghaei, A. (2014). The use of particle/substrate material models in simulation of cold-gas dynamic-spray process. Journal of Thermal Spray Technology, 23(3), 530.

    Article  Google Scholar 

  • Rahmati, S., Zúñiga, A., Jodoin, B., & Veiga, R. (2020). Deformation of copper particles upon impact: A molecular dynamics study of cold spray. Computational Materials Science, 171, 109219.

    Article  Google Scholar 

  • Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M. P., Kromer, R., Costil, S., et al. (2018). Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Additive Manufacturing, 19, 134.

    Article  Google Scholar 

  • Roe, B. P., Yang, H. J., Zhu, J., Liu, Y., Stancu, I., & McGregor, G. (2005). Boosted decision trees as an alternative to artificial neural networks for particle identification. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2–3), 577.

    Article  Google Scholar 

  • Santner, T. J., Williams, B. J., Notz, W., & Williams, B. J. (2003). The design and analysis of computer experiments (Vol. 1). Berlin: Springer.

    Book  Google Scholar 

  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.

    Article  Google Scholar 

  • Subramaniyan, A. K., & Sun, C. (2008). Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures, 45(14–15), 4340.

    Article  Google Scholar 

  • Sun, C., Zhou, X., Xie, C., Liu, B. (2000). Investigating hard/soft combinations of cold spraying by Eulerian approach. Surface Engineering, pp. 1–9.

  • Swenson, R. J. (1983). Comments on virial theorems for bounded systems. American Journal of Physics, 51(10), 940.

    Article  Google Scholar 

  • Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 31(3), 759.

    Article  Google Scholar 

  • Vilardell, A. M., Cinca, N., Concustell, A., Dosta, S., Cano, I., & Guilemany, J. (2015). Cold spray as an emerging technology for biocompatible and antibacterial coatings: State of art. Journal of Materials Science, 50(13), 4441.

    Article  Google Scholar 

  • Viscusi, A., Astarita, A., Gatta, R. D., & Rubino, F. (2019). A perspective review on the bonding mechanisms in cold gas dynamic spray. Surface Engineering, 35(9), 743.

    Article  Google Scholar 

  • Yao, H. L., Yang, G. J., & Li, C. J. (2018). MD simulation on collision behavior between nano-scale TiO\(_{2}\) particles during vacuum cold spraying. Journal of Nanoscience and Nanotechnology, 18(4), 2657.

    Article  Google Scholar 

  • Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., et al. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628.

    Article  Google Scholar 

  • Yu, M., Li, W. Y., Wang, F., & Liao, H. (2012). Finite element simulation of impacting behavior of particles in cold spraying by Eulerian approach. Journal of Thermal Spray Technology, 21(3–4), 745.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Project of the Key Program of National Natural Science Foundation of China (Grant numbers 11972155). This work is also partially supported by the China Scholarship Council and Hunan Provincial Innovation Foundation For Postgraduate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Wang, H. & Liu, GR. Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics. J Intell Manuf 32, 1009–1023 (2021). https://doi.org/10.1007/s10845-020-01599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01599-6

Keywords

Navigation