Skip to main content
Log in

Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Predicting remaining useful life (RUL) is crucial for system maintenance. Condition monitoring makes not only degradation data available for RUL estimation but also categorized health status data for health state identification. However, RUL prediction has been treated as an independent process in most cases even though potential relevance exists with health status detection process. In this paper, we propose a convolution neural network based multi-task learning method to reflect the relatedness of RUL estimation with health status detection process. The proposed method applied to the C-MAPSS dataset for aero-engine unit prognostics supported superior performances to existing baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov), 1817–1853.

    Google Scholar 

  • Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature learning. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems (Vol. 19, pp. 41–48). Cambridge: MIT Press.

    Google Scholar 

  • Azadeh, A., Asadzadeh, S. M., Salehi, N., & Firoozi, M. (2015). Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model. Reliability Engineering & System Safety, 142, 357–368.

    Article  Google Scholar 

  • Babu, G. S., Zhao, P., & Li, X. L. (2016, April). Deep convolutional neural network based regression approach for estimation of remaining useful life. In International conference on database systems for advanced applications (pp. 214–228). Cham: Springer.

  • Baxter, J. (1997). A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 28(1), 7–39.

    Article  Google Scholar 

  • Bradbury, J., Merity, S., Xiong, C., & Socher, R. (2016). Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576.

  • Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.

    Article  Google Scholar 

  • Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining (pp. 785–794). ACM.

  • Cheng, J., Wang, Z., & Pollastri, G. (2008, June). A neural network approach to ordinal regression. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1279–1284). IEEE.

  • Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

  • Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440–1448).

  • Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.

  • Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98–109.

    Article  Google Scholar 

  • Heimes, F. O. (2008, October). Recurrent neural networks for remaining useful life estimation. In International conference on prognostics and health management, 2008. PHM 2008 (pp. 1–6). IEEE.

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241–265.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, NIPS (pp. 1097–1105). https://doi.org/10.1145/3065386.

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    Article  Google Scholar 

  • Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334.

    Article  Google Scholar 

  • Lei, Y., He, Z., & Zi, Y. (2008). A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications, 35(4), 1593–1600.

    Article  Google Scholar 

  • Li, X., Ding, Q., & Sun, J. Q. (2018a). Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering & System Safety, 172, 1–11.

    Article  Google Scholar 

  • Li, F., Zhang, L., Chen, B., Gao, D., Cheng, Y., Zhang, X.,… & Peng, J. (2018a, November). A light gradient boosting machine for remainning useful life estimation of aircraft engines. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 3562–3567). IEEE.

  • Lim, P., Goh, C. K., & Tan, K. C. (2016, July). A time window neural network based framework for remaining useful life estimation. In 2016 international joint conference on neural networks (IJCNN) (pp. 1746–1753). IEEE.

  • Malhi, A., Yan, R., & Gao, R. X. (2011). Prognosis of defect propagation based on recurrent neural networks. IEEE Transactions on Instrumentation and Measurement, 60(3), 703–711.

    Article  Google Scholar 

  • Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv preprint arXiv:1608.06154.

  • Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.

  • Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the International Speech Communication Association.

  • Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807–814).

  • Niu, G., & Yang, B. S. (2010). Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Systems with Applications, 37(12), 8831–8840.

    Article  Google Scholar 

  • Niu, Z., Zhou, M., Wang, L., Gao, X., & Hua, G. (2016). Ordinal regression with multiple output CNN for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4920–4928).

  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  • Patton, R. J., Frank, P. M., & Clark, R. N. (Eds.). (2013). Issues of fault diagnosis for dynamic systems. Berlin: Springer.

    Google Scholar 

  • Rabiei, M., & Modarres, M. (2013). A recursive Bayesian framework for structural health management using online monitoring and periodic inspections. Reliability Engineering & System Safety, 112, 154–164.

    Article  Google Scholar 

  • Riad, A., Elminir, H., & Elattar, H. (2010). Evaluation of neural networks in the subject of prognostics as compared to linear regression model. International Journal of Engineering & Technology, 10(6), 52–58.

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.

    Article  Google Scholar 

  • Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.

  • Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008, October). Damage propagation modeling for aircraft engine run-to-failure simulation. In International conference on prognostics and health management, 2008. PHM 2008 (pp. 1–9). IEEE.

  • Stringer, D. B., Sheth, P. N., & Allaire, P. E. (2012). Physics-based modeling strategies for diagnostic and prognostic application in aerospace systems. Journal of Intelligent Manufacturing, 23(2), 155–162.

    Article  Google Scholar 

  • Tian, Z. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237.

    Article  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, NIPS (pp. 5998–6008).

  • Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A review of diagnostic and prognostic capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing, 30(1), 79–95.

    Article  Google Scholar 

  • Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1(2), 270–280.

    Article  Google Scholar 

  • Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 275, 167–179.

    Article  Google Scholar 

  • Xia, T., Dong, Y., Xiao, L., Du, S., Pan, E., & Xi, L. (2018). Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliability Engineering & System Safety, 178, 255–268.

    Article  Google Scholar 

  • Yoon, A. S., Lee, T., Lim, Y., Jung, D., Kang, P., Kim, D., et al. (2017). Semi-supervised learning with deep generative models for asset failure prediction. arXiv preprint arXiv:1709.00845.

  • Yuan, M., Wu, Y., & Lin, L. (2016, October). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In IEEE international conference on aircraft utility systems (AUS) (pp. 135–140). IEEE.

  • Zaidan, M. A., Relan, R., Mills, A. R., & Harrison, R. F. (2015). Prognostics of gas turbine engine: An integrated approach. Expert Systems with Applications, 42(22), 8472–8483.

    Article  Google Scholar 

  • Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2017). Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2306–2318.

    Article  Google Scholar 

  • Zhang, Y., & Yang, Q. (2017). A survey on multi-task learning. arXiv preprint arXiv:1707.08114.

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C2005026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.S., Sohn, S.Y. Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach. J Intell Manuf 32, 2169–2179 (2021). https://doi.org/10.1007/s10845-020-01630-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01630-w

Keywords

Navigation