Skip to main content

Advertisement

Log in

Bagging for Gaussian mixture regression in robot learning from demonstration

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Robot learning from demonstration (LfD) emerges as a promising solution to transfer human motion to the robot. However, because of the open-loop between the learner and task constraints, the precision of the reproduction at the desired task constraints cannot always be guaranteed and the model is not robust to changes of the training data. This paper proposes a closed-loop framework of LfD based on the bagging method of Gaussian Mixture Model and Gaussian Mixture Regression (GMM/GMR) to obtain a robust learner of LfD with high precision reproduction. The original demonstration data are divided into several sub-training data, from which multiple Gaussian mixture models are developed and combined through weighted average to provide predictions. A closed-loop is built between the reproduction of the combined learner and task constraints, and the weights that satisfy task constraints are estimated in the closed-loop. The prediction uncertainty of the models is automatically eliminated by the closed-loop, therefore, the low robustness of the LfD model to the training date is overcome. In experiments, tasks of the position and velocity are both constrained in dual closed-loop. It is shown that the proposed method can significantly meet the task constraints without increasing the complexity of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

t :

Time step

\(\varvec{\xi }^o\), \(\varvec{\xi }\) :

Training data before/after DTW

\(\varvec{\xi }^s\) :

Spatial component of the training data

\(\varvec{\Theta }\) :

Parameters of GMM

\(\pi _k\) :

Prior probability of a Gaussian distribution in a GMM

\(\varvec{\beta }_k\) :

The probability of the component k to be responsible for t

\(\varvec{\mu }_k\) :

Mean of a Gaussian component

\(\varvec{\Sigma }_k\) :

Covariance matrix of a Gaussian distribution

K :

Number of Gaussian components

\({\mathcal {N}}(\varvec{\mu _k},\varvec{\Sigma _k})\) :

Gaussian distribution described by mean \(\varvec{\mu }_k\) and covariance matrix \(\varvec{\Sigma }_k\)

\({\mathcal {N}}(\varvec{\xi }_i;\varvec{\mu }_k,\varvec{\Sigma }_k) \) :

Probability of \(\varvec{\xi }_i\) where the density function is a Gaussian distribution

\(\hat{\varvec{\xi }^s}\) :

Expected mean of the reproduction (spatial component)

\(\hat{\varvec{\Sigma }}^{ss}\) :

Expected covariance of the reproduction (spatial component)

Q :

The number of the base learners

D :

Spatial dimensionality

N :

Number of datapoints

M :

Demonstration number

L :

Key-points number

\(G,G^{'}\) :

Combined learner

\(G_i\), \(G^{'}_i\) :

The i-th base learner

\(y_i\), y :

The output of \(G_i\)/G

\(\omega _i\) :

The generalized weight of base learner \(G_i\)

\({\mathbb {C}}\) :

Task constraints

\({\mathbf {A}}^d\) :

The d-th dimension of \({\mathbb {C}}\)

\({\mathbf {B}}^d\) :

\(L \times Q\) matrix consisted of the output of each base learners

\({\mathbf {C}}_q\) :

\(D \times D\) diagonal matrix

\(p_i\) :

The i-th key-position point

\(\varvec{d}_i\),\(\varvec{d}^{'}_i\) :

The distance between the reproduction of GMR/Bagging-GMR and the key-points \(p_i\)

References

  • Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.

    Article  Google Scholar 

  • Bänziger, T., Kunz, A., & Wegener, K. (2018). Optimizing human-robot task allocation using a simulation tool based on standardized work descriptions. Journal of Intelligent Manufacturing, 31(7), 1635–1648.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Google Scholar 

  • Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1–29.

    Article  Google Scholar 

  • Calinon, S. (2020). Lasa handwriting dataset library. Available in: https://gitlab.idiap.ch/rli/pbdlib-matlab/. Accessed 12 Mar 2018.

  • Calinon, S., Alizadeh, T., & Caldwell, D. G. (2013). On improving the extrapolation capability of task-parameterized movement models. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 610–616). IEEE.

  • Calinon, S., & Billard, A. (2007). Incremental learning of gestures by imitation in a humanoid robot. In: Proceedings of the ACM/IEEE international conference on human–robot interaction, (pp. 255–262). ACM.

  • Calinon, S., & Billard, A. (2007). Active teaching in robot programming by demonstration. In: The 16th IEEE international symposium on robot and human interactive communication, 2007. RO-MAN 2007 (pp. 702–707). IEEE.

  • Calinon, S., & Billard, A. (2008). A probabilistic programming by demonstration framework handling constraints in joint space and task space. In: Intelligent robots and systems, 2008. IROS 2008. IEEE/RSJ international conference on (pp. 367–372). IEEE.

  • Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2), 286–298.

    Article  Google Scholar 

  • Chiu, C.-Y., Chao, S.-P., Ming-Yang, W., Yang, S.-N., & Lin, H.-C. (2004). Content-based retrieval for human motion data. Journal of Visual Communication and Image Representation, 15(3), 446–466.

    Article  Google Scholar 

  • Chen, T., & Ren, J. (2009). Bagging for gaussian process regression. Neurocomputing, 72(7–9), 1605–1610.

    Article  Google Scholar 

  • Chernova, S., & Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(3), 1–121.

    Article  Google Scholar 

  • Derigent, W., Cardin, O., & Trentesaux, D. (2020). Industry 4.0: Contributions of holonic manufacturing control architectures and future challenges. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01532-x.

  • Duque, D. A., Prieto, F. A., & Hoyos, J. G. (2019). Trajectory generation for robotic assembly operations using learning by demonstration. Robotics and Computer-Integrated Manufacturing, 57, 292–302.

    Article  Google Scholar 

  • Farahani, M. D., & Mozayani, N. (2020). Acquiring reusable skills in intrinsically motivated reinforcement learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01629-3.

  • Friedman, J. H., & Hall, P. (2007). On bagging and nonlinear estimation. Journal of Statistical Planning and Inference, 137(3), 669–683.

    Article  Google Scholar 

  • Huang, Y., Rozo, L., Silvério, J., & Caldwell, D. G. (2019). Kernelized movement primitives. International Journal of Robotics Research, 38(7), 833–852.

    Article  Google Scholar 

  • Huang, Y., Silvério, J., Rozo, L., & Caldwell, D. G. (2018). Generalized task-parameterized skill learning. In: 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–5). IEEE.

  • Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.

    Article  Google Scholar 

  • Khansari-Zadeh, S. M., & Billard, A. (2010). BM: An iterative algorithm to learn stable non-linear dynamical systems with Gaussian mixture models. In: 2010 IEEE international conference on robotics and automation (pp. 2381–2388). IEEE.

  • Lemme, A., Meirovitch, Y., Khansari-Zadeh, M., Flash, T., Billard, A., & Steil, J. J. (2015). Open-source benchmarking for learned reaching motion generation in robotics. Paladyn, Journal of Behavioral Robotics, 6, 30–41.

    Article  Google Scholar 

  • Micheler, S., Goh, Y., Lohse, N., et al. (2020). A transformation of human operation approach to inform system design for automation. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01568-z.

  • Ni, J., Tang, W. C., & Xing, Y. (2018). Assembly process optimization for reducing the dimensional error of antenna assembly with abundant rivets. Journal of Intelligent Manufacturing, 29(1), 245–258.

    Article  Google Scholar 

  • Nielsen, I., Dang, Q.-V., Bocewicz, G., & Banaszak, Z. (2017). A methodology for implementation of mobile robot in adaptive manufacturing environments. Journal of Intelligent Manufacturing, 28(5), 1171–1188.

  • Paraschos, A., Daniel, C., Peters, J. R., & Neumann, G. (2013). Probabilistic movement primitives. In: Advances in neural information processing systems (pp. 2616–2624).

  • Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2018). Using probabilistic movement primitives in robotics. Autonomous Robots, 42(3), 529–551.

    Article  Google Scholar 

  • Pervez, A., & Lee, D. (2018). Learning task-parameterized dynamic movement primitives using mixture of GMMs. Intelligent Service Robotics, 11(1), 61–78.

    Article  Google Scholar 

  • Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510.

    Google Scholar 

  • Pignat, E., & Calinon, S. (2017). Learning adaptive dressing assistance from human demonstration. Robotics and Autonomous Systems, 93, 61–75.

    Article  Google Scholar 

  • Ueda, N., & Nakano, R. (1998). Deterministic annealing EM algorithm. Neural Networks, 11(2), 271–282.

    Article  Google Scholar 

  • Wang, K.-J., Rizqi, D. A., & Nguyen, H.-P. (2020). Skill transfer support model based on deep learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01606-w.

  • Wilson, A. D., & Bobick, A. F. (1999). Parametric hidden Markov models for gesture recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 21(9), 884–900.

    Article  Google Scholar 

  • Zhang, J. (1999). Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks, 12(6), 927–938.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Key Research and Development Plan under Grant No. 2018YFB1308700, the National Natural Science Foundation of China (NSFC) under Grant No. 51535004, and the Fundamental Research Funds for the Central Universities under Grant No. 2020kfyXJJS064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Yang, J. & Ding, H. Bagging for Gaussian mixture regression in robot learning from demonstration. J Intell Manuf 33, 867–879 (2022). https://doi.org/10.1007/s10845-020-01686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01686-8

Keywords

Navigation