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Abstract
The paper presents an Integrated Maintenance Decision Making Model (IMDMM) concept for cranes under operation espe-
cially into the container type terminals. The target is to improve cranes operational efficiency through minimizing the risk
of the Gantry Cranes Inefficiency (GCI) results based on the implementation of the Digital Twins concept for maintenance
purposes. The proposed model makes a joint transportation process and crane maintenance scheduling, relevant to assure
more robust performances in stochastic environments, as well as to assess and optimize performances at different levels, from
components and transport device to production systems (container terminal). The crane operation risk is estimated with a
sequential Markov chain Monte Carlo simulation model and the optimization model behind of IMDMM is supported through
the Particle Swarm Optimization algorithms because the objective function a non-linear stochastics problem with bounded
constrains. The developed model allows the container terminal operators (management process) to obtain a maintenance
schedule that minimizes the GCI (holistic indicator), as well as establishing the desired level of risk. The paper demonstrates
the effectiveness of the proposed maintenance decision making concept model for cranes under operation using data from of
a real container terminal (case study).

Keywords Gantry cranes · Digital twins · Maintenance scheduling · Operation risk analysis · Monte Carlo simulation ·
Container terminal

List of symbols

Indices

I Index for gantry cranes
t Index for time
j, k, n, m Sub-indices to denote variation

Parameters

Ns Number of simulations
T Simulation window
NMi Number of maintenances of the component i
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TTMi,k Start time of the k-th maintenance task of the
component i

TDMi,k Duration time of the k-th maintenance task of the
component i

t Index for time
i Component index
k, r Index for maintenance
λVF Vessels average frequency parameter
VN Vessels number that enter to the port
μGCi Average move/hour of a gantry cranes
σGCi Standard deviation move/hour of a gantry cranes
TTFi,s Time to failure s-th randomly generated for the

component i
TTRi,s Time to repairs s-th randomly generated for the

component i
αi and β i Shape and scale parameters, respectively, of the

assumedWeibull distribution to simulate failures
for each i-th gantry crane

μi and σ i Average time repair and standard deviation,
respectively, of the assumed Normal distribution
function for each i-th gantry crane

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01689-5&domain=pdf
https://orcid.org/0000-0001-7064-0183
https://orcid.org/0000-0002-5085-3170


1864 Journal of Intelligent Manufacturing (2021) 32:1863–1881

s, m Degradation index
NGC Number of gantry cranes
NKi Number of random failures generated for each

i-th gantry crane

Variables

VFn Simulated period in hours between the arrival of two
consecutive vessels

VCn Containers number of the n-th vessel
VC Simulated containers demand at the time instant t
LCi, j Number of movements j-th of the gantry crane i
rn Simulated value of risk
R Risk distribution function
Yt Simulated containers number of the arriving vessels
Xt Simulated capacity of the terminal container
xi Independent variable of the objective function
LCi, j Capacity of the gantry crane i at the time instant t
TC Simulated container terminal capacity at the time

instant t

Introduction

In the last two decades, container transportation system has
been faced under increasing development and it is predicted
that this increase will have a rate of about 10% until 2020
according to Widarto and Handani (2015). This fact shows
the importance of container transportation system as a key
role of container terminals to link between sea and land.
Although container terminals are growing their capacity to
respond to these current demands, the rapid increase in the
transportation of containerized goods has created a continu-
ous need for the optimal use of equipment and the facilities in
the port. The current target is a continuous effort to decease
the operational costs in order to improve the performance of
the ports.

In the container terminal operating system, gantry cranes
are critical transport devices and major bottleneck restricting
the working efficiency of the harbour. Container terminal
managers pay more and more attentions to improve oper-
ational efficiency of gantry cranes (Ri et al. 2012; Euchi
et al. 2016; Cheng-Ji et al. 2014; Dadashi et al. 2017; Seung
et al. 2012; Abourraja et al. 2017; Yan and Kap 2011) and
the maintenance process is one of fundamental aspects to
ensure its proper functioning (Smoczek and Szpytko 2012,
2017; Liu et al. 2018; Voisin et al. 2010). The increasing of
loading/unloading activities requires the proper readiness of
supported infrastructure, including gantry cranes, and con-
cepts like DT (Qi and Tao 2018; Tao et al. 2018), Closed
Loop Engineering (Barari and Pop-Iliev 2009; Jie and Nan
2017), e-Maintenance (Voisin et al. 2010) are the perfect tools

to improve the design, production planning, manufacturing,
and maintenance in this system.

Of particular interest to this research is the relationship
betweenmaintenance process andDT framework. Almost all
of today’s maintenance-oriented applications touch in some
way the DT framework based on existing IT (Information-
Technology) tools. Reference like (Melesse et al. 2020)
explores between 2016 and 2019 papers related with DT
keyword, and the second most used application domains is
oriented to maintenance process. Table 1 shows a collection
of papers whose main contribution, on maintenance process
domains, is supported by DT frameworks and at the same
time illustrates guidelines reasons of the selected approach
applied in this research. The DT has been defined for more
than 15 years and in the last few years the concept has been
shaped, leveraging on the exponential increase in the power
of the IT tools, sensors, embedded systems, IoT, able to gen-
erate and analyze plenty of data. Grieves (Grieves 2014) is
considered to be the pioneer of this concept and his postu-
lates about theDTdimensions (physical entity, virtualmodel,
and connection) are used in almost all the papers related to
the framework to guide the contribution and the proposed
methodology, as shown in Table 1.

The papers referenced in the Table 1 are clear DT appli-
cations on maintenance process and in all cases the results
achieved are accurate, but in some cases, it is not easy to dis-
tinguish the differences between the dimensions, however,
the reference (Tao et al. 2018) provides the desired guide-
lines for the study conducted in this research: maintenance
process in a container terminal (critical interaction: gantry
cranes-vessel arriving frequency planned). Therefore, as an
accepted definition, we adopt the one coming from (Tao et al.
2018) “A dynamic model in the virtual world that is fully
consistent with its corresponding physical entity in the real
world and can simulate its physical counterpart’s character-
istics, behavior, life and performance in a time fashion”, as
well as the five dimension framework formed by Grieves
postulates (physical object, virtual counterpart, connection,
data and services) introduced in the same work.

Paper contribution

Following the samedefinition and framework, but adapting to
the requirements of this research, Fig. 1 illustrates the schema
concept proposed to improve maintenance scheduling sup-
port process based on DT concepts and consequently the
operational efficiency of the container terminal system con-
sidered, and Fig. 2 shows the five-dimension DT architecture
adopted, which can be summed in the expression IMDMMDT

� f (PhysicalObject,V irtualCounterpart,Connection,Data,
Services).
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The following sections describe eachdimension according
to the analyzed system and the last section adds additional
remarks related to the implementation in practice.

Physical object

The current industry has higher automation levels and com-
plexity (container terminal is only one of them), therefore,
decompound the Lego system in critical pieces simplify the
problem and gives us the opportunity to focus in specific
process. Degradation process is inherent on technical sys-
tems; therefore, maintenance is pertinent everyday more and
the human decision-making process behind is a target to be
improved.

In this paper, the physical object (PO) studied is the
maintenance scheduling management process in a container
terminal composed by 10 gantry cranes, two power trans-
formers, two emergency generators and two transmissions
lines connecting with a Power System (see Fig. 2). The elec-
trical Power System together with generator support system
guarantee a stable operation in the terminal containers, but
the relation between the frequency of arriving vessels and
gantry cranes movement capacity in the container terminal
is the critical relation studied (see Fig. 3).

Virtual counterpart

The virtual counterpart (VCo) is an IMDMM based on the
PO computational modelling, in fact, is a DT tool that sim-
ulate the same process performed in the time-real, but in
this case, an interactive (because themodel consider freedom
variables, planned variables) optimization algorithm chooses
the best maintenance scheduling given the vessel frequency
planned in the coming year and the historical data from the
previous process as a result of machine learning analysis, and
then gives the feedback to the container terminal entity man-
ager (planner) as a closed-loop engineering system. In our
case, VCo depends on two main variables: system capacity
and system load, VCo� f (VC, TC) in our model. The imple-
mentation of VCo or IMDMM in practice is aligned with the
field of robots. References like (Neil et al. 2008; Foumani
et al. 2015, 2018; Baniasadi et al. 2020) are examples of
similar studies in different environments. They all describe
the same function studied in this research, IT tools, robots in
this case, that help managers to face scheduling challenges,
it means, once the sequence of the process to be conducted
is well known (PO), software and robots together (VCo) per-
form all the tasks. Depending on the real-world application,
restrictions are needed. For instance, typical restriction to be
considered in cooperative gantry crane system is the safety
distance between them, but, in our case, we assume a well-
designed system (each gantry crane works in a well-defined
set of space), reason why, the restriction is not considered

123



1866 Journal of Intelligent Manufacturing (2021) 32:1863–1881

Fig. 1 DT concept for scheduling maintenance purposes

Fig. 2 Five-dimension DT model for maintenance management

and as a consequence the system capacity (TC variable in the
model) is a parallel composition of gantry cranes.

Figure 4 shows the conceptual relation between VC, and
TC. In Fig. 4, two main process are conducted: operation
and maintenance. Knowing the operating system capacity
and planned system load in the container terminal (modelling
and simulation processes), allow us to assess the convolution
between them andmeasure the loss capacity, defined forward
as (GCI). Consequently, we can also evaluate the mainte-

nance scheduling impact with the same indicator GCI in a
closed-loop engineering system using an optimizationmodel
because the loading capacity of the gantry cranes consider
both process (maintenance and degradation), VC � f (LCD

& LCM ) in our model. Therefore, the maintenance strategies
(maintenance as a support process of the operation) change
depending on operation variables (see red arrows in Fig. 4).

Connection

The formal connection (C) between the PO and the VCo is
a database structure created for maintenance purposes (see
Fig. 2). Basically, the database stores the collected, filtered,
analyzed data by unique component ID considered. This
intermediate structure guarantees the practical implementa-
tion of the optimization model because allow us to merge
the historical data and the planned process, C � f (Planned
Parameters Set, Historical Parameters Set), in our case as
follows:

1. Planned Parameters Set � {λVF , VFn, VN, VC}
2. Historical Parameters Set� { LCi, j ,μGCi, σGCi, TTFi,s,

TTRi,s, TTMi,k , TDMi,k}

123



Journal of Intelligent Manufacturing (2021) 32:1863–1881 1867

Fig. 3 Cyber-physical system
diagram

Fig. 4 Maintenance management process

Data

The connection structure is linkedwithdata, our case thedata
used is historical degradation information of all the compo-

nents in the system, previous planned process, system struc-
ture, and so on, collected by SCADA (Supervisory Control
And Data Acquisition) and SAP (Systems, Applications &
Products in Data Processing) systems, defined as D � f
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(SCADAsystem, SAP system), in fact, historical information
available related with the maintenance scheduling manage-
ment process:

1. Nominal parameters of the components involved.
2. Historical degradation, time to failure (TTF), time to

repair (TTR).
3. Maintenance sequences according with operation times,

life cycle, manufacturer recommendations.
4. Planned vessel frequency.
5. System structure.
6. Components localization.
7. Components efficiency.

Services

The DT tool finality in our case is give services to the
entity manager of the container terminal ensuring fasters
and optimal decision-making process. Once the maintenance
scheduling management process is optimal based on the
model freedom variables, consequently, the holistic opera-
tional efficiency in the container terminal increase. In our
case, S � f (GCI indicator, Planned Parameters Set).

Additional remarks

Generator support systems, including power transformers
and transmission lines, are examples of complex system
which have a dynamic characteristic time by time accord-
ing to (Szpytko 2004). Stochastic type methods can simulate
the dynamic behavior of a system time by time and in some
conditions and assumptions. In our case, the physical object
studied include the generator support system in the mainte-
nance scheduling process because the coordination is crucial
to guarantee a proper container terminal functionality (relia-
bility standards).

The paper is focusing on developing a joint transportation
process and crane maintenance scheduling relevant to assure
more robust performances in stochastic environments, aswell
as to assess and optimize performances at different levels,
fromcomponents and transport device to production systems.

The human decision-making process behind of the main-
tenance scheduling management process is the coordination
of componentsmaintenance and/or replacement thatmake up
the system but maintaining holistic and/or clustering objec-
tives defined by the decision makers. Coordination itself can
be an complex problem and humanly dreadful to find a faster
optimal solution, mathematically speaking is a nondeter-
ministic polynomial time NP-complete problem, therefore,
listing all possible operational scenarios to make a coherent
coordination in order to find the best scenario is difficult, rea-
sonwhy, computationalmodeling supportingbyDTconcepts
are pertinent in this case. In addition, maintenance schedul-

ing is an open problem because engineering systems increase
their complexity and variety every single day. Below, we dis-
cuss the selected approach used to implement and solve the
current problem identified briefly justifying the reasons.

Scheduling as a general problem, can be decomposed
essentially by hierarchical levels: holistic objective (refer-
ring to global or integrated strategies) or multi-objectives
(referring to decentralized strategies), and optimization cri-
teria: cost, reliability, or hybrid approach. Examples are
cost-holistic (Zhi et al. 2020), cost-multi-objectives sequen-
tial (Briskorn and Zey 2019) and holistic-reliability approach
(Luo et al. 2019). For any of the cases, the problem is to
find the best scheduled sequence of actions for each com-
ponent considered in the system. Generally, the objectives
and restrictions are not well defined because depends on
the individual system requirements (available information,
relevant goals, application in practice). However, as a con-
sensus, the optimization problem is defined as amulti-criteria
combinatorial problemof non-linear objective functionswith
constrains (adding in our case stochastics), and the problem
objective is to determine the timing and sequence of the tasks
periods of each component analyzed. Therefore, the variables
x in a scheduling problem is represented by the start time of
the tasks for all the component considered. Referring to the
maintenance, the conclusion is the same, only in this case,
the task to coordinate are maintenance tasks.

The reference (Briskorn and Zey 2019) introduces in the
literature overview, the contributions of different authors
since 2009, almost all the contributions, including the ref-
erence (Briskorn and Zey 2019), focus on the interaction
between cranes and do not consider the interaction frequency
arriving vessel-gantry crane, however, all the proposals
are viable practical applications regardless of strategies to
solve the problem. On the other hand, the authors (Castilla-
Rodríguez et al. 2020) in the literature review highlight the
potentialities of the simulation approach to fill the gaps in the
well-established historical models proposed since 1989, but
all applications are oriented to the operation, notmaintenance
oriented.

Reference (Liu et al. 2018) is a maintenance-oriented
contribution that highlights how maintenance activities have
been ignored in the literature on terminal container systems.
The contribution is aligned with the operation and consid-
ers the interaction between vessel capacity-gantry cranes
because minimize the turn-around time of the vessel, but
the interaction is fixed, it does not analyze how the vessel
arriving frequency can condition the maintenance schedule.
Furthermore, the proposal is mathematically complex and is
only applicable in specific scenarios with necessary simpli-
fications. The model proposed in this paper attempts to find
the missing interactions suggesting a simple model mathe-
matical formulation with a minimum set of input parameters.
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Depending on the approach selected to resolve themainte-
nance scheduling problem, the volume of initial information
required, the number of models constrains, and the com-
plex mathematical formulations are issues to consider. These
three dimensions above sometimes define the approach to
be used. Multi-objectives approach introduces constrains
and modeling challenges but is closer to the system needs.
Holistic-objective approach sometimes do not represent all
the system requirements. Cost-objective approach required
high information levels and assumptions to standardize the
selection criteria. Reliability-objective approach is not well
accepted and understood by the industry. In conclusion, the
approach selection depends largely on the characteristics of
the system under analysis and implementation requirements.

For us, maintenance scheduling solution implemented is
a holistic-reliability approach. Holistic, for an easy under-
standing of the maintenance impact on the system, under-
stood as decision-making oriented to analyze the process as
a whole (unique indicator) by the entity manager, and relia-
bility, because a container terminal is an isolated and critical
system working in continuous process, by construction, the
system must be reliable. In addition, the selected approach
requires generally available information and the probabilistic
mathematical formulation is translated into technical terms
by the GCI indicator. Therefore, the approach selection is
guided by individual system requirements.

Especially, the paper is focus on Integrated Maintenance
Decision Making Model (IMDMM) concept definition for
cranes under operation into the container type terminals, and
in a specific scenario description as an application example.
The DT type model target is to improve cranes operational
efficiency through minimizing the risk of the Gantry Cranes
Inefficiency (GCI) indicator as a result of implement the
maintenance scheduling process described in Fig. 4.

The DT definition and description is extensive and has
several layers. The current paper assumes a certain DT con-
nection and resolves a potential scenario with the virtual
counterpart.

The document is organized as follows; firstly, the mathe-
matical formulation of the optimization problem is presented
with the constraint set and the flow diagram, as well as
all the equations and assumptions of the proposed model
organized in subsections. The optimization problem for-
mulation is the virtual counterpart shadow, and the flow
diagram describe the connection between the entity man-
ager (services) and maintenance scheduling management
process (physical object). Following the same idea, in next
sections the scenario (parametrization and calibration) and
methods (solution) are described, discussed and validated
with a potential real system linking with the database struc-
ture for maintenance purposes. Further several comparative
and possible scenarios are presented with a real container ter-
minal (case study). Finally, some important conclusions are

drawn to highlight potential outcomes in this research area
and the connection with another investigation pieces.

IMDMM:Mathematical modeling

The proposed model objective is to minimize the expected
value of the convolution function defined as E[R] (GCI
indicator), between the gantry cranes capacity distribution
function of the container terminal affected for the genera-
tor support system influence (container terminal capacity)
defined as X and the containers number distribution function
of the arriving vessels (container terminal load) defined as Y.
The model is defined below:

min E[R] � 1

Ns

Ns∑

n�1

rn

� 1

Ns

Ns∑

n�1

⎛

⎜⎜⎜⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T∑
t�1

Yt−Xt

T∑
t�1

Yt

× 100 if Xt < Yt

0 if Xt ≥ Yt

⎞

⎟⎟⎟⎠

n

subject to: 0 < xi < T − (
NMi∑

k�1

T T Mi,k +
NMi∑

k�1

T DMi,k)

X , Y ∈ R
+ → R ∈ R

+ (1)

where

• E[R] is the expected value of the risk function (GCI).
• Ns number of simulations, R risk function, R � {r1, r2,
…, rNs} values of risk, is the convolution product of the
distribution functions X and Y. Therefore, R → f (X, Y ).

• X gantry cranes capacity distribution function of the con-
tainer terminal affected for the generator support system
influence, depends on the total loading capacity LCi of the
container terminal and other variables. Therefore X → f
(LCi, …).

• LCi loading capacity of the crane i, depends on TTMi,k

(start time to maintenance), TDMi,k (time duration main-
tenance) and other variables. Therefore LCi → f (TTMi,k ,
TDMi,k , …).

• xi independent variable of the objective function, xi �
TTMi,1, the start times for the first maintenance of each
gantry crane or component considered in the system.

• T is the simulation window.
• NC number of components considered in the system.
• NMi is the number of maintenances of each gantry crane
or component considered in the system.

• i � 1, 2, …, NC .
• t � 1, 2, …, T.
• k � 1, 2, …, NMi.
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Fig. 5 Flow optimization model

The stochastic non-linear optimization model with
bounded constrains proposed for the gantry cranes, genera-
tor support system, power transformer and transmission lines
maintenance scheduling problem solution in the container
terminal present only continuous variables xi � TTMi,1 and
is defined in the model constraint intervals (user definition,
usually the intervals are defined by the container terminal
manager in the database structure, periods depending on
financial and/or human resources). The independent vari-
able of the objective function to be optimized xi � x1, x2,
…, xNMi depends on the quantity of maintenance tasks NMi

to be coordinated for each gantry cranes, generator, power
transformer and transmission line (database structure stores
cycle life information for each devices).

The optimization variables are only the start times for the
first maintenance of each unit TTMi,1. Once TTMi,1 is estab-
lished, the remaining TTMi,k where k ��1, are calculated
adding the corresponding maintenance intervals, which are
invariable and depends on the operation time between two

consecutive maintenance tasks (SCADA system monitors
devices operation times and SAP system establishes cycle
life information, therefore, the link between both process
converge in the database structure defining the maintenance
cycle for each devices considered).

Figure 5 shows the computational algorithm flow diagram
implemented to solve the online maintenance scheduling
given the scenario inputs. The input parameters and the
model variables are defined at the beginning of the paper.
The computational algorithm flow is linear and only has two
conditioning moments, first one to guarantee the simulations
error criterion, and second one to guarantee the best solution
of all the IMDMM proposals evaluated.

The problem is solved as follows: the optimization algo-
rithm proposes a set of TTMi,1 and NS Monte Carlo simula-
tions are performed to determine NS values of risk (r1, r2,
…, rNs). The Risk mean E[R] and variance V [R] are deter-
mined from (r1, r2,…, rNs) and the error criterion is checked.
If the desired error is not achieved, NS is augmented and
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the Monte Carlo simulations are repeated for the same set
of TTMi,1. When the desired error is achieved the process
is repeated for another set of TTMi,1. This is done several
times (1, 2, 3, …, N) determining decreasing values of Risk
mean E[R1], E[R2], …, E[RN ]. The set of TTMi,1 leading
to the lowest Risk mean (E[RN ]) is the solution. The out-
put model is the maintenance scheduling for all the devices
considered in the system. By construction, the optimization
model variables are associatedwith themaintenance process,
but other stochastics variables considered (resulting from
machine learning analysis of historical degradation data) in
the model to estimate the risk are described in the next sec-
tions.

The optimization model construction formalized in this
section is structured in two steps. First one, the vessels
demand, gantry cranes, generator support system, power
transformers and transmission lines stochastic mathemati-
cal model for a container terminal are defined. The Markov
model used for the generator support systemhas four reliabil-
ity states, considers random faults intrinsic to these systems,
included the faults repair times and the probability of start-
ing failure for the generators. The Markov model used for
the gantry cranes, power transformers and transmission lines
have two reliability states. The vessels demand considers the
frequency stochastic behaviour hourlywithwhich they arrive
at the port and the vessels container capacity. Second one, the
MonteCarloMarkovChain (MCMC)model used to estimate
theGCI risk indicator and the block diagram structure used to
relate gantry cranes/generator support system is formalized.

Vessels demandmodelling

The period of time between the arrival of two consecutive
vessels in this paper is considered that follows an exponential
distribution rounded to the nearest integer with parame-
ter λVF , which we will denote in this investigation as VFn

~E(λVF), where n � 1, 2, …, VN—number of vessels that
arrive at the container terminal in the simulation window
T. The n-th independent random numbers generated from
the distribution function guarantees the follows restriction
V N∑
n�1

V Fn ≥ T .

One of the vessel features is its length and capacity. Each
vessel carries several containers to the port for unloading, and
each vessel loads a specific number of containers and leaves
the port. The containers number VCn of the n-th vessel is
chosen according to empirical distribution shown in Table 2,
generating u uniformly distributed random numbers [0, 1].

Table 2 Empirical distribution

Length (meters) Capacity (containers number) Class (%)

100 50 0≤u ≤4.81

120 100 4.81<u ≤7.80

140 200 7.8<u ≤10.05

150 250 10.05<u ≤22.67

160 300 22.67<u ≤32.30

170 400 32.3<u ≤41.60

180 600 41.6<u ≤47.59

190 800 47.59<u ≤52.94

205 1000 52.94<u ≤56.36

215 1100 56.36<u ≤66.09

225 1200 66.09<u ≤76.68

240 1300 76.68<u ≤82.03

260 2000 82.03<u ≤91.66

280 3000 91.66<u ≤96.79

300 4000 u >96.79

The compound distribution function that models the con-
tainers number behavior VC of the n-th vessel that arrives at
the port, at the time instant t is defined in Eq. (2) below:

VC � f (t, θ) �
((
VCn,t

)V Fn
t�1

)V N

n�1
(2)

where θ is a set of parameters, θ � { VCn , VFn, VN}, t � 1,
2, …, T (simulation window) and n � 1, 2, …, VN ensuring

the restriction
V N∑
n�1

V Fn ≥ T .

Vessel demand or vessel frequency is a crucial variable
for the container terminal manager, in fact, is the freedom
planned variable in the model (see Fig. 1) and defines the
starting point in the DT model proposed. Given the planned
vessel frequency (DT input), the model return the main-
tenance scheduling and the GCI indicator measured (DT
output).

Gantry cranes modelling

The gantry cranes operation is continuous, eventually fails
and is repairable. This random behavior can be described
from Markov processes (Soszynska 2012). Considering the
operation effectiveness of the container gantry crane, in this
paper, we fix that the system and its components have two
states z�0, 1 andbetween them transition rates are defined. If
the probability function of the transition rates from one state
to another is exponential, as an example, they are denoted asλ
(failure rate) andμ (repair rate) of the gantry crane, but as we
know, the probability distribution can be change depending
of the analyzed historical degradation data. Figure 6 shows
a Markov process with two states: available and unavailable,
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Fig. 6 Two-state model for a gantry crane

and its transition rates λ andμwhen exponential is used. The
probability of moving from one state to another depends on
the failure or repair rate of each gantry crane. For the two-
state system represented in Fig. 6, the system of differential
equations with initial conditions P0(t) + P1(t) � 1, P0(0) �
1 and P1(0) � 0 that models the Markov process is shown in
Eq. (3).

dP0
dt

� −λP0(t) + μP1(t)

dP1
dt

� −μP1(t) + λP0(t) (3)

Equations (4) and (5) are the stationary solution of the
system of differential Eqs. (3).

P0 � μ

λ + μ
� A (4)

P1 � λ

λ + μ
� U (5)

In the two-state model, the gantry cranes are considered
fully available (z � 1) or totally unavailable (z � 0). Accord-
ing to the standard systems, each gantry cranes should carry
out 25 moves per hour which is equal to 144 s for every
movement (Azimi and Ghanbari 2011). In order to simu-
late a real operation, the j-th number of movements LCi, j

~N(μGCi ,σGCi ), where μGCi is the average move/hour and
σGCi the standard deviation assumed. The stochastic capacity
LCi, j at the time instant t of a gantry cranes i is determined
by the TTFi,s, TTRi,s and LCi, j . The loading capacity LC is
a result coming from gantry cranes standards, but the vari-
ables TTFi,s and TTRi,s are results of historical degradation
data monitoring by SCADA system and consequently, fil-
tered and organized in the database formaintenance purposes
(DT intermediary connection). The maintenance scheduling
is a planned process, therefore, in order to simulate fail-
ures in the system for risk calculation purposes (prediction),
theoretical distribution functions are fitted to the historical
degradation data of each gantry crane using machine learn-
ing (maximum likelihood estimation MLE framework), then
generating TTF and TTR random samples from the fitted dis-
tributions is possible simulate the chain of TTFi,s and TTRi,s.
The parameters TTFi,s, TTRi,s and LCi, j allow to simulate
with (6) the behavior of LCi, j generating s-th independent
random numbers. Based on the previous experience (Azimi
andGhanbari 2011),we assumeTTFi,s ~W(αi,β i) andTTRi,s

~N(μi, σ i), where αi and β i are the shape and scale parame-
ters of theWeibull distribution function respectively,μi is the
average time repair and σ i the standard deviation assumed
of the Normal distribution function respectively for each i-th
gantry crane. The model proposed to simulate gantry cranes
capacity is defined below:

LCD
i, j � f (t |θ )

�

⎧
⎪⎪⎨

⎪⎪⎩

LCi, j if t <
m∑
s�1

T T Fi,s +
m−1∑
s�1

T T Ri,s

0 if
m∑
s�1

T T Fi,s +
m−1∑
s�1

T T Ri,s ≤ t <
m∑
s�1

T T Fi,s +
m∑
s�1

T T Ri,s

(6)

where θ is a set of parameters, θ � { LCi, j , TTFi,s, TTRi,s};
i � 1, 2, …, NGC ; j � 1, 2, …, T (simulation window);
s � 1, 2, …, NKi and m � 1, 2, 3, …, NKi knowing that
NKi depends on the simulation window used in the optimiza-
tionmodel. The s-th independent random numbers generated
from distribution functions guarantees the follows restriction
m∑
s�1

T T Fi,s +
m∑
s�1

T T Ri,s ≥ simulation window.

The container terminal capacity compound distribution
functionTC defined inEq. (7) is determined by the j-th gantry
cranes total capacity in the container terminal (all the gantry
cranes are in parallel) and the time of each vessel in the
container terminal VFn:

TC � f (t |θ ) �
⎛

⎜⎝

⎛

⎝
T∑

j�1

NGC∑

i�1

LCi, j,t,n

⎞

⎠
V Fn

t�1

⎞

⎟⎠

V N

n�1

(7)

where θ is a set of parameters, θ � {LCi,j, NGC , T, VFn,
VN}, i � 1, 2, …, NGC, t � 1, 2, …, T (simulation window),
j � 1, 2, …, T and n � 1, 2, …, VN ensuring the restriction
V N∑
n�1

V Fn ≥ T . where n � 1, 2, …, VN.

On the other hand, one of the factors that affects the
capacity of container terminals, is not stochastic and is not
considered a random phenomenon, it is type maintenance
strategy used into gantry cranes. Themaintenance is contem-
plated within the strategies of a container terminal because
it guarantees planned work time for the cranes. Maintenance
is the activity designed to prevent failures in the production
process and in this way reduce the risks of unexpected stops
due to system failures (see Fig. 4). In a container terminal,
to perform some maintenance tasks it is necessary that the
gantry crane does not work, and this causes loss of capacity
in the terminal. Due to this reason, it is advisable that some
maintenance task be carried out at the time of the year where
the least frequency of vessels exists, so that equilibrium and
adequate flow are guaranteed in the container terminal. To
consider this effect, in this work the parameters TTMi,k and
TDMi,k (time duration maintenance) are introduced in the
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Eq. (8), then we combine the Eq. (6) and (8) using junction
symbol & representing the AND logic, as we show below:

LCM
i, j � f (t |θ )

�

⎧
⎪⎪⎨

⎪⎪⎩

LCi, j if t <
r∑

k�1
T T Mi,k +

r−1∑
k�1

T DMi,k

0 if
r∑

k�1
T T Mi,k +

r−1∑
k�1

T DMi,k ≤ t <
r∑

k�1
T T Mi,k +

r∑
k�1

T DMi,k

(8)

where i� 1, 2,…,NGC ; j� 1, 2,…,T ; k � 1, 2,…,NMi; r �
1, 2,…,NMi; and θ � { LCi, j , TTMi,k , TDMi,k}. Therefore,
and as a combination consequence of both process LC �
LCD & LCM knowing that the junction symbol & is used
for the AND logic. As a modelling result, the LC variable
defined in Eq. (7), consider both process, degradation (D)
and maintenance (M).

Usually, SAP system store cycle life information for each
device definedpreviously bymanufactures and consequently,
the information is filtered and organized in the database for
maintenance purposes (DT connection).

Generators, transformers, and transmission lines
modelling

The generating unit, transformer or transmission line oper-
ation is continuous, eventually fails and is repairable. This
stochastic behavior can be described withMarkov processes.
The two-state model is used to represent the generators that
operate as base load (Salgado Duarte et al. 2020), know-
ing this result, we used two-state Markov model and the
simulation function given by (Salgado Duarte et al. 2020)
for transformer and transmission line operation models case.
However, in the power systems there are peak load units,
intermittent operating units, or emergency units. This differ-
ence is because they are turned on and off frequently and/or
it is important consider the probability of starting operation.
This behavior is necessary to consider it in the generating
unit model. The Sub-Committee on Application of Proba-
bilistic Methods of the IEEE (Calsetta et al. 1972) proposed
a four-state model for these generating units. In this paper,
the procedure and the final simulation model used for inter-
mittent operating units or emergency units is taken from the
paper (Salgado Duarte et al. 2020). The generator, trans-
former, and transmission lines information treatment into the
database structure for maintenance purposes (DT intermedi-
ary connection), follows the same gantry cranes description
above.

Gantry cranes-generator support systemmodelling

Once we know the LCi for each gantry crane i, the rela-
tion between the gantry cranes system and the generator
support system is defined in Fig. 7. Two electrical systems

in parallel supply the electricity for the container terminal.
Power system supply the electricity under normal operating
conditions, but if the service is interrupted because the trans-
former T2 or the transmission lines LT1 and LT2 fail or have
programed maintenance, two emergency generators supply
the electricity of the container terminal. We assume that the
power system does not fail, this means that it is always avail-
able and the service is only interrupted by transformer T2
or the transmission lines LT1 and LT2, and the generator G1
and G2 are equal and they can, together, supply all the con-
tainer terminal demand, therefore the possible states of the
gantry cranes-generator support system are determinate for
the following rules, where the junction symbol & is used for
the AND logic while the symbol || is used for the OR logic:

State 1: Generator support system are totally unavailable;
the operational capacity of the container terminal is 0%
because fail or have programedmaintenance, therefore (T1
& T2) || (T1 & TL1 & TL2) || (T2 &G1&G2) || (G1 &G2
& TL1 & TL2) || (T1 & T2 & G1 & G2 & TL1 & TL2).
State 2: Generator support system are available 50%;
the operational capacity of the container terminal is 50%
because fail or have programedmaintenance, therefore (T2
& G1) || (T2 & G2) || (TL1 & TL2 & G1) || (TL1 & TL2
& G2).
State 3: Generator support system are fully available; the
operational capacity of the container terminal is 100%.

As a conclusion, during the simulation process, we sim-
ulate independently the LCi for each gantry crane i, as well
as all the components in the generator support system, then
using the Eq. (7), we estimate the system stochastic capacity
(terminal capacity), then by construction, the block diagram
in Fig. 7 join the generator support system in the terminal
capacity estimation.

The defined states for the generator support system allow
analyzed the influence of the electricity supply reliability sys-
tem in the container terminal and establishes the connection
to coordinate the maintenance process of all these compo-
nents at the same time using the models defined before.

Risk indicator modelling

The risk function denoted as R can be generated with the sum
of X + Y random, independent, and non-negative variables.
By definition, the product of R(s) � P(s)Q(s) is defined with
the generating function P(s) � ∑∞

j�0 p j s j of X and the

generating function Q(s) � ∑∞
j�0 q j s j of Y. Consequently,
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Fig. 7 Gantry cranes/generator
support system diagram

the generating function of R(s) is generally defined by the
convolution formula (14):

rk �
k∑

j�1

p jqk− j (9)

where pj and qj are the generated sequence from P(s) and
Q(s) respectively.

In this investigation, X defined in Eq. (10) is the gantry
cranes capacity distribution function of the container termi-
nal affected for the generator support system influence, and
Y defined in Eq. (11) is the containers number distribution
function of the arriving vessels:

X � TC (10)

Y � VC (11)

The risk function is denoted in this investigation as R.
This function is the convolution product of Eqs. (10) and
(11), defined in Eq. (12):

R �
{ ∑T

t�1 Yt−Xt∑T
t�1 Yt

× 100 if Xt < Yt

0 if Xt ≥ Yt
(12)

The expected value of the risk function E[R] is defined in
this paper asGantryCranes Inefficiency (GCI),when t � 1, 2,
…, T considers the 8 760 h of the year (simulation window).
In this work, to estimate E[R] the Monte Carlo simulation
method is used. The convergence process is fluctuating in
this method. However, the error level decreases when the
number of samples increases, according to the law of large
numbers. In this method it is not practical to run a simula-
tion with many samples, because more calculation time is
required. Therefore, it is necessary to balance the required
precision and the calculation time with a stop criterion. This
criterion guarantees that the simulation continues, until the
risk indicator has the precision specified for the simulation.
The parameter used as stopping criterion in the method is the
coefficient of variation β defined in (Salgado Duarte et al.
2020).

Summarizing, the GCI indicator estimated by Monte
Carlo simulation is defined below:

GCI � E[R] ± βE[R] � E[R] ± σ [R]

E[R] · √N
E[R]

� E[R] ± σ [R]√
N

(13)

GCI indicator assess the system risk level given a mainte-
nance scheduling proposed (DToutputs). Based on the result,
the container terminal entity manager can take some decision
in time (DT services), preventing container terminal capacity
loss related with inefficient planification.

IMDMM:Mathematical parameterizing
and calibrating

As a starting point for parametrization and calibration, it
should be emphasized that the model is fully implemented in
MATLAB. (2019). version 9.7.0.1,319,299 (R2019b). Nat-
ick, Massachusetts: The MathWorks Inc., and can be run
on a personal computer. The implementation was tested in
a system Core i5/CPU 1.6 GHz/RAM 8 GB and all results
presented below were performed in the same system.

Conceptually, all the IMDMMparameters information are
into the database structure for maintenance purposes (DT
connection). To analyse the DT virtual counterpart applica-
bility (optimization model), a potential scenario parameteri-
zation is described below.

The container terminal parameterization data used into the
paper is taken from the work (Azimi and Ghanbari 2011).
The container terminal analyzed is a system with 10 gantry
cranes and each one has a number-of-movements variable
following a Normal distribution functions with the average
of 21 move/hour and the standard deviation of 5.56. The sys-
tem analyzed assumes 10 gantry cranes available with the
TTR for each gantry cranes following a normal distribution
with the average of 23.6520 h and the standard deviation
of 12.2640 (Soszynska 2012), the related index of TTF for
all gantry cranes following Weibull distribution with scale
parameter of 1219 h and shape parameter of 0.84 (Azimi and
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Table 3 Components data

Component MTTF MTTR D T Ps

Generator G1 840 25 65 15 0.0099

Generator G2 520 12 50 30 0.0084

Power Transformer T1 2000 25 – – –

Power Transformer T2 1800 15 – – –

Transmission line TL1 2500 30 – – –

Transmission line TL2 2500 30 – – –

The parameters MTTF,MTTR, D and T are expressed in hours

Table 4 Frequency according to the time of year

Hours/yr Vessel frequency (1/λ)

0–2190 h 6.41 h

2190–4380 h 16.41 h

4380–6570 h 6.41 h

6570–8760 h 16.41 h

Ghanbari 2011). The parameterization proposed for the gen-
erators, power transformer and transmission lines are shown
in the Table 3 below.

In the paper (Azimi and Ghanbari 2011), the period
between the arrival of two consecutive vessels follows an
Exponential distribution with the average of 9.41 h, but we
change the approach variating the average value depend-
ing on container terminal operation year seasons. In order
to evidence the proposed approach consistency, we describe
visually all the modelling steps, and, in the meantime, we
analyze the results as a calibration. Figure 8 shows the sim-
ulated containers demand in a year according to the vessel’s
frequency in the Table 4 that arrive at the container terminal
and showhowmany containerswemustmove each hourwith
the gantry cranes system. It is visible in Fig. 8, year moments
with arriving high vessel’s frequency.

Figure 9 shows the simulated terminal stochastic capacity
with 10 gantry cranes according to the vessel’s frequency,
that is, the capacity conjunction of all the gantry cranes per
hour, giving us the container terminal capacitymustmove per
hour, according to the gantry cranes availability affected by
the generator support system. Figure 9 is consistent because
when the vessel frequency is higher, the less time the ves-
sel stays in the port, as a result the simulated operating
terminal capacity has higher frequency (gantry cranes with
higher operating frequency) and less holistic capacity avail-
able, therefore, more time the vessel in the port, more time
available to move the load, then more capacity available.

Figure 10 shows the convolution between the simulated
containers demand in a year according to the arriving ves-
sels frequency and the simulated stochastic capacity of the
container terminal with 10 gantry cranes. In addition, Fig. 11
shows the relation between X, Y and R in the first 200 h of the

year for the study case discussed. The two figures above are
general views of the simulation approach because measure
the capacity loss in the container terminal when the vessel
frequency overload the movement availability of the gantry
cranes.

One of the paper objectives is to highlight the influence of
maintenance on the system. To analyze how the maintenance
process affects the system, a scenario is proposed where, for
each gantry crane, generator support system, power trans-
former and transmission lines, two weeks of continuous
preventive maintenance are scheduled for the year, and it
is assumed that the components will not be available for the
terminal during the two weeks of maintenance.

Given the above parametrization of the model, is possi-
ble visualize the relation between all the components in the
system and merge all the steps described in the “IMDMM:
Mathematical parameterizing and calibrating” section with
the parameters values in the current section, therefore, the
maintenance scheduling behind of the Integrated Mainte-
nance Decision Making Model is ready to be solve in the
next section.

Before we jump to the next section, Fig. 12 shows how
the first condition in the flow diagram is guaranteed given a
maintenance scheduling of all the components in the system.
In this case, 62 iterations are necessary to obtain the desired
criterial. In addition, theminimumvalue that the optimization
algorithm can reach, given the described parametrization is
GCI � 10.54%. The target value is known because the best
possible scenario is no maintenance at all.

In the case of the simulation parameters, the simulation
window is one year (8760 h) and we assume robust expected
value estimation (GCI indicator) by Monte Carlo simulation
when ε � 0.01 (Salgado Duarte et al. 2020).

In order to estimate the expected value of the risk function,
we must know the system distribution function, but in this
case the construction is only possible by bootstrapping the
individual’s distribution functions by Monte Carlo simula-
tions (gantry cranes individual’s distribution) and then based
on the rules described before, the systemdistribution function
is created (see Fig. 7), this technique is known as Parametric
Bootstrap.When the complexity anddimension of the system
is large, simulation time is an issue. Equation (14) declare the
criterial for robust expected value estimation (optimization
target) and the clear dependency on number of simulations
and expected value standard deviation. Therefore, the num-
ber of simulations needed to guarantee a robust estimation
depends on the scenario evaluated, but for all the cases the
same rule is considered (ε � 0.01), as Fig. 12 shows.
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Fig. 8 Containers demand

Fig. 9 Container terminal stochastic capacity

IMDMM:Mathematical solving

As we describe above, the model has a stochastic non-linear
objective functionwith bounded constraints. In order to solve
this specific problem, PSO algorithmic was used because
GCI risk indicator (objective function value given themainte-
nance scheduling (DT services), is the results of a convolution
by Monte Carlo simulation, therefore we do not know the
objective function derivate and Newton’s, Lagrange, quasi-
Newton or Sequential Quadratic Programming traditional
methods cannot be used.

PSO is fully applicable to this problem and a brief descrip-
tion below clarify the reason. The next subsections we
describe the PSO algorithmic implemented and the solution
proposed for the previous parametrization.

Particle swarm optimization (PSO) algorithm

The PSO algorithm used in this investigation is based on the
algorithm described in (Kennedy and Eberhart 1995), using
modifications suggested in (Mezura-Montes and Coello
Coello 2011) and in (Pedersen 2010). In addition, the algo-
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Fig. 10 Convolution curve for a simulated year

Fig. 11 Convolution curve of 200 simulated hours

rithmwas successfully testedwith the Rosenbrock’s function
or banana function.

The particle swarm algorithm begins by creating the ini-
tial particles and assigning them initial velocities. It evaluates
the objective function at each particle location and deter-
mines the best (lowest) function value and the best location. It
chooses new velocities, based on the current velocity, the par-
ticles’ individual best locations, and the best locations of their
neighbors. It then iteratively updates the particle locations
(the new location is the old one plus the velocity, modified
to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping cri-
terion.

By default, the algorithm creates particles at random uni-
formly within bounds (model constrains, restriction intervals
for TTMi,1). If there is an unbounded component, the algo-
rithm creates particles with a random uniform distribution
from –1000 to 1000. If you have only one bound, the algo-
rithm shifts the creation to have the bound as an endpoint,
and a creation interval 2000 wide. Particle j has position x(j),
which is a row vector with nvars elements (number of TTMi,1

to be coordinated). Control the span of the initial swarmusing
the TTM0

i,1 (initial swarm span).
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Fig. 12 Expected and simulated value behavior

Similarly, the algorithm creates initial particle veloc-
ities v at random uniformly within the range [-r, r],
where r is the vector of initial ranges. The range of
component i ismin(upper-bound(i)—lower-bound(i), initial-
swarm-span(i)), in our case, min((Simulation Window −
(TTMi,1 + TTMi,k ��1 + TDMi,k)) − 0, TTM0

i,1).
The algorithm implemented evaluates the objective func-

tion at all particles. It records the current position p(j) of each
particle j. In subsequent iterations, p(j) will be the location of
the best objective function that particle j has found. And b is
the best overall particles: b � min (objective-function(p(j)))
and d is the location such that b � objective-function(d), in
our case, the objective-function E[R] � f (TTMj

i,1).
The algorithm initializes the neighborhood-sizeN toNmin

� max (round (swarm-size×min-neighbors-fraction)). The
inertia W � max(inertia-range), or if inertia-range is nega-
tive, it setsW � min(inertia-range) and the stall counter c �
0. For convenience of notation, set the variable ylocal � self-
adjustment-weight, and yglobal � social-adjustment-weight,
where self-adjustment-weight and social-adjustment-weight
are options.

The algorithm implemented updates the swarm as follows
by iteration steps. For particle j, which is at position x(j):

1. Choose a random subset S of N particles other than j.
2. Find f best(S), the best objective function among the

neighbors, and g(S), the position of the neighbor with
the best objective function.

3. For u1 and u2 uniformly (0,1) distributed random vectors
of length nvars, update the velocity v�W ·v + ylocal·u1·(p-
x) + yglobal·u2·(g-x). This update uses a weighted sum of:

a. The previous velocity v
b. The difference between the current position and the

best position the particle has seen p-x
c. The difference between the current position and the

best position in the current neighborhood g-x

4. Update the position x � x + v.
5. Enforce the bounds. If any component of x is outside a

bound, set it equal to that bound. For those components
that were just set to a bound, if the velocity v of that
component points outside the bound, set that velocity
component to zero.

6. Evaluate the objective function f � function(x).
7. If f< function(p), then set p � x. This step ensures p has

the best position the particle has seen.
8. The next steps of the algorithm apply to parameters of the

entire swarm, not the individual particles. Consider the
smallest f �min(f (j)) among the particles j in the swarm.
If f <b, then set b � f and d � x. This step ensures b has
the best objective function in the swarm, and d has the
best location.

9. If, in the previous step, the best function value was low-
ered, then set flag � true. Otherwise, flag � false. The
value of flag is used in the next step.

10. Update the neighborhood.
If flag � true:

a. Set c � max (0, c−1).
b. Set N to Nmin.
c. If c <2, then set W � 2·W.
d. If c >5, then set W � W /2.
e. Ensure that W is in the bounds of the inertia-range.

If flag � false:
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Table 5 Optimization algorithm properties

Property Value

Function tolerance 1.0000e−03

Inertia range [0.1000, 1.1000]

Initial swarm span 2000

Max iterations 200*(number of variables)

Max stall iterations 20

Min neighbors fraction 0.2500

Self-adjustment weight 1.4900

Social-adjustment weight 1.4900

Swarm size Min (100, 10*number of variables)

a. Set c � c + 1.
b. Set N � min (N + Nmin, swarm-size).

The algorithm iterates until it reaches a stopping criterion,
in this case, when the relative change in the best objective
function value g over the last max-stall-iterations is less than
0.001 (Function Tolerance described in the diagram flow).
The algorithm settings used in the solution is described in
the following Table 5.

Solution proposed

Once the optimization algorithm used on the solution and
the full parameterization are described, the results of the pro-
posed optimization model are shown in Fig. 13 and Table 6.

Figure 13 is the convergence process of the optimization
model and shows how the GCI indicator varies when gantry
cranes, generator support system, power transformers and

Table 6 Solution for the scenario

Component Maintenance start time (TTM)

Generator G1 4012-h

Generator G2 7337-h

Power transformer T1 7320-h

Power transformer T2 6898-h

Transmission line TL1 6857-h

Transmission line TL2 8424-h

Gantry cranes GC1 4602-h

Gantry cranes GC2 7319-h

Gantry cranes GC3 6800-h

Gantry cranes GC4 7817-h

Gantry cranes GC5 5009-h

Gantry cranes GC6 6458-h

Gantry cranes GC7 406-h

Gantry cranes GC8 3937-h

Gantry cranes GC9 2224-h

Gantry cranes GC10 6432-h

transmission lines maintenance scheduling changes during
the year. The value of the objective function achieved (GCI
� 11.48%) shows the proposed approach robustness because
the result is close to GCI � 10.54% (no maintenance at all).

Proper planned maintenance scheduling process improve
the operational efficiency in the container terminal, and
the GCI indicator measure the impact. Table 6 throws the
expected results, the support system component scheduling
maintenance must be carried out during the periods of the
year where the vessels have the lowest frequency in the con-
tainer terminal, therefore, the GCI risk indicator is valuable

Fig. 13 Convergence process of the optimization algorithm
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for the container terminal managers (DT services) because
they can decide according to the risk level of the decision-
making process, what would be the best moment in the year
to carry out themaintenance process in the system (DT coun-
terpart).

Conclusions

The paper describes the proposed IMDMM concept (DT
counterpart) applicability based on risk assessment, and how
themodel can efficiently find themaintenance scheduling for
all the devices under operation considered in practice. The
above results confirm, in the presented scenario, the rela-
tion between the estimation of GCI indicator (DT services)
used into a container terminal by the entity manager and
the vessels arriving frequency behavior to the harbor (free
variable in the DT physical object). Experimental results
show that presented model can help to organize the main-
tenance scheduling strategy in the container terminal. The
paper solves the assessing risks problem of transportation
process in the container terminals through the simulation-
based approach (MCMC) which considers the relationship
between random factors (historical degradation data fitted
bymachine learning framework) during the container reload-
ing and maintenance scheduling process efficient used in the
container terminal capacity estimation. The presented DT
model opens the way to extensive simulations under various
scenarios and conditions, with the possibility to be updated in
real-time, to detect anomalies and to conduct accurate diag-
nostics and prognostics of cranes into selected scenarios.
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