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Abstract 

The practical application of machine learning and data science 

(ML/DS) techniques present a range of procedural issues to be 

examined and resolve including those relating to the data issues, 

methodologies, assumptions, and applicable conditions. Each 

of these issues can present difficulties in practice; particularly, 

associated with the manufacturing characteristics and domain 

knowledge. The purpose of this paper is to highlight some of 

the pitfalls that have been identified in real manufacturing 

application under each of these headings and to suggest 

protocols to avoid the pitfalls and guide the practical 

applications of the ML/DS methodologies from predictive 

analytics to prescriptive analytics.  

Index Terms: data science, manufacturing practice, machine 

learning, big data, prescriptive analytics 

1. Introduction 

According to the Fourth Industrial Revolution, often called 

Industry 4.0, machine learning technologies and data science 

analytics (ML/DS hereafter) will take on increasingly important 

roles as automation transforms on global supply chains and 

smart factory [1] [2]. In fact, manufacturing-process innovation 

is more critical [3] and ML/DS provides potential solutions to 

drive the technology migration. ML/DS techniques show the 

strengths, weaknesses and major functionalities to address 

difficulties and challenges in production systems [4]. Most of 

the Industry 4.0 literature has developed numerous ML/DS 

techniques for automation and prediction; however, few studies 

have investigated the practical aspects when applying ML/DS 

to manufacturing systems. This study fills the gap in literature 

and discusses several common issues (pitfalls hereafter) and the 

corresponding possible solutions (protocols hereafter), 

particularly, ad hoc methods based on manufacturing practice. 

 To make a success of the manufacturing data science, it is 

critical to understand the characteristics, data issues, and 

management challenges of the production systems, as shown in 

Table 1. All the data collected from the real-time sensors in the 

shop floor present the dynamics of the production 

characteristics. An excellent data scientist needs to devote 

himself/herself into the fab and understand the factory 

dynamics and human nature, and thus he/she can interpret the 

real issues from data log by investigating the bottom of the 

problem and provide insightful suggestion for improvement. 

We take two data issues and two management issues as 

examples, respectively. 

For data issues, one example is about one categorical variable 

with too many categories (i.e. levels). Such variable like 

recipes, materials, or parts in high-tech industry showing 

categories more than one or ten thousands is common due to a 

variety of product types. The curse of dimensionality or 

computational burden arise as the analyst transforms them into 

dummy/binary variables. In another example, for R&D product 

or engineering-trial request, these types of products set some 

specific parameter or recipe for product development or small-

volume multiple-type purpose. They may bring the data with 

outlier or noise to make the ML/DS model training unstable. 

They also commonly arise “one-shot trial” or the “small data” 

issue, i.e. the number of samples is insufficient, when compared 

with mass production bringing big data. Datasets that are too 

small can also result in skewed models or inadequate analytical 

outcomes. Big data is for population estimation while small 

data is for causal validation. In addition, these R&D-type 

products usually lead to frequent equipment setups and occupy 

some equipment used for general products of mass production. 

The capacity loss or equipment contamination could be 

potential problem. 

Table 1 Production characteristics, data issues, and 

management challenges encountered by data analysts 
Characteristics Data Issues and Management Challenges Refer. 

Batch 
production 

Lot ID, merge or split, mixed lot, lot tracing [5] 

Small-volume 

multiple-type 

Class/data imbalance problem, small samples 

for each specific product, changeover 

[6] 

Parallel 
machine 

Missing value, identical or non-identical, old 
or new, high dimension, multicollinearity, 

scheduling complexity  

[7] 
[8] 

Bottleneck 

machine 

Low throughput, Little’s law, variability 

improvement for line balance 

[9] 

Machine 

capability 

New/old machines with different throughputs, 

process supports, utilization, work-in-process 

(WIP), part replacement frequency, etc., 
class/data imbalance problem 

[10] 

Recipe and 

parts 

Too many levels in one categorical variable, 

dummy variables transformation from 

categorical variable, high dimension 

[8] 

Sampling 

testing 

Missing value, multi-response, metrology 

delay  

[11] 

Engineering 

or R&D lot  

Design of experiments with small datasets, 

outlier, setup time, machine occupied (capacity 
loss), machine failure 

[12] 

 

Maintenance Capacity loss, scheduled or non-scheduled 

downtime, mean-time-to-repair (MTTR), 
mean-time-between-failure (MTBF), manual 

check list, text, typing error, majority class 

“Others” regarding failure/root cause 

[13] 

Inventory Different types of inventory, Inventory = Lead 

Time + Uncertainty 

[14] 

[15] 

Changeover Capacity loss, sequence-dependent setup time [16] 

Bottleneck 
shift 

Change of product-mix, different treatment, 
WIP transfer 

[17] 

Queue time 

limit 

Process route, transportation, batch production, 

defects, WIP 

[18] 

[19] 

 

 For management challenges, the bottleneck machine which 

is one process with limited capacity and low throughput is 

critical in the manufacturing shop floor. The bottleneck affects 

supply overstock, production cycle time, and work-in-process 

(WIP) directly. The Little’s law shows a typical relationship 

among cycle time, WIP, and throughput for factory 

management based on queueing theory [9]; that is, the cycle 

time deteriorates exponentially when WIP increases over a 

capacity limit [20]. Bottleneck also affects the line balancing 

from upstream and downstream aspects, and thus we not only 

improve the throughput of bottleneck but also need to improve 

the variability (i.e. reliability) of the bottleneck such as 

improvements of mean-time-between-failure (MTBF) and 

mean-time-to-repair (MTTR). Take inventory issue as another 
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example, inventory including materials, parts, WIP, finished 

goods, etc. is one kind of “muda” in a manufacturing system 

[21]. Excess inventory will result in obsolescence or loss from 

falling price. Generally, inventory is a “result” rather than a 

“cause”. The literal equation “ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝐿𝑒𝑎𝑑𝑇𝑖𝑚𝑒 +
𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ” is useful and helpful to keep in mind for 

inventory reduction. It implies that shortening the production 

lead time and reducing the uncertainty are the insightful ways 

to reduce inventory essentially [22] [14]. For example, 

scheduling is a typical method for cycle time reduction, and 

predictive analytics helps uncertainty elimination by data 

collection and ML/DS techniques.  

 In practice, ML/DS provides a variety of applications for 

analyzing manufacturing systems. Generally, data analysts 

prefer to use of prediction models with higher accuracy (i.e. 

minimal mean squared error (MSE)) via cross validation [23]. 

For accuracy, the neural network models [24] [25], kernel 

methods, [26] or ensemble methods such as random forest [27] 

and boosting [28] have been developed, and while these 

techniques can improve accuracy dramatically and address 

overfitting issues well, they are difficult to be interpreted [29]. 

In many real applications, interpretation is more attractive than 

prediction accuracy for clarifying the scientific causal 

relationship rather than a statistical correlation. For example, 

when management needs to consider a variety of decision risks, 

instead of using MSE, showing the mean absolute percentage 

error (MAPE) of a prediction model is more meaningful. For 

example, choosing the best answer may not be intuitive in the 

case of “Prediction Model A shows 95% accuracy with a big 

loss if misclassified, and Prediction Model B shows a 90% 

accuracy with a small loss if misclassified.” If management 

considers the decision risks, the story changes and pushes the 

predictive thinking toward the prescriptive analytics, i.e., the 

focus is now on the tradeoff of decision risks and resource 

optimization.  

This study is motivated by the production characteristics, 

data issues, management challenges, and decision risks from a 

practical aspect. To promote ML/DS and automation, we list 

several pitfalls and their corresponding protocols in practical 

manufacturing systems. 

 

2. Pitfalls and Protocols 

This section describes the solutions (i.e. protocols) to 12 

common pitfalls encountered when applying ML/DS to 

manufacturing systems. 

  

Pitfall 1. Can ML/DS identify the important variables/features?  

The feature selection technique identifies or extracts the 

minimally sized subset of features from a database that (1) 

improve prediction performance (accuracy); (2) provide 

simpler, faster, and more cost-effective predictors (fewer 

control charts for process monitoring); (3) approach the original 

class distribution, given only the selected variables; (4) and 

provide a better understanding of the causal relation/physical 

meanings among variables [30] [31]. In literature, previous 

studies typically mention two types of feature selection 

techniques:  variable selection and feature extraction (the latter 

is also called variable transformation). Variable selection 

selects the best subset of the raw variables without a 

transformation and generally provides the supervised learning 

with labels, such as stepwise selection [32] [33], least absolute 

shrinkage and selection operator (LASSO) [34], classification 

and regression trees (CART) [35], random forest [27], and 

Boosting [36] [37]. Feature extraction transforms the raw 

variables into a lower dimensional space and generally is the 

unsupervised learning without labels, such as principal 

component analysis (PCA) [38], independent component 

analysis (ICA) [39] [40], Ward’s clustering [41], and K-means 

clustering [42]. For simplicity, the variable is selected from raw 

input columns; however, the feature is constructed from the 

combination of raw input columns [30]. This paper uses 

“variable” rather than “feature” when there is no 

impact/confusion on the selection algorithms. In manufacturing 

practice, variable selection is more commonly used than feature 

extraction since the feature (e.g., the principal component) 

constructed by several raw input variables is not easily 

understood or is difficult to interpret, even though the extracted 

features can improve the prediction accuracy. However, the use 

of variable selection can introduce other issues, such as whether 

only one ML/DS variable selection technique can identify the 

important variables or whether ML/DS can effectively identify 

the important variables. 

 

Protocol 1. Using only one ML/DS to identify the important 

variables is risky, particularly when we only use the linear 

stepwise selection model to investigate the main effect of each 

individual predictor without considering the higher interaction 

effect among the variables. In fact, it is difficult to understand 

the geometric relation (linear or nonlinear) among variables 

from the collected dataset because the manufacturing dataset 

involves a complicated process network with the interaction 

effect among several processes, and thus we have no idea how 

to pick the right feature selection technique. Therefore, to select 

the most robust variables, we can use multiple techniques with 

linear and nonlinear models simultaneously. Voting is a 

common method because it ranks the variables by the sum of 

their selected times, using different feature selection techniques 

[8]. Table 1 gives an illustration, where 1 indicates if the 

variable is selected; otherwise 0. 

Table 1 Variable selected by voting 
 Stepwise 

selection 

Lasso Random 

forest 

Boosting # of 

votes 

received 

Var_108 1 1 1 1 4 

Var_32 1 1 1 0 3 

Var_79 0 1 1 1 3 

Var_50 1 0 1 1 3 

Var_53 1 0 0 1 2 

Var_14 1 1 0 0 2 

… … … … … … 

 

Can ML/DS really work to identify the important variables? 

The answer appears to be “it depends”. For example, after 

collecting data including sensors and parameters from 

manufacturing equipment, if we see one column with identical 

values (i.e., all observations have the same value in this 

variable), based on the ML/DS there is no information provided 

to distinguish the observations, and thus the variable is 

unimportant or statistically insignificant. Even so, this variable 
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can be very important (e.g., equipment developer instructed this 

parameter is so critical and no adjustments is allowed after 

equipment installation). In this case, ML/DS may not 

successfully identify this parameter due to the column with 

identical values. 

 

Pitfall 2. Can put all raw variables into feature selection 

technique? 

If a dataset contains many raw variables (e.g., less than 300), 

we may put them into a feature selection technique and 

generally obtain the result in a reasonable run time. However, 

the number of raw variables can exceed 1,000 or 10,000, such 

as in predictive manufacturing [1], semiconductor 

manufacturing [43], gene expression [44], or bioinformatics 

[45], and the run time can be excessive, and even run out of 

memory.  

 

Protocol 2. For a large amount of variables, we can remove the 

unimportant variables and then apply the feature selection 

technique. Based on the sufficient and necessary condition, if 

there is a causal relationship between two variables, then they 

must show some degree regarding the correlation between 

them. Thus, we can derive “if there is a no correlation between 

two variables, they must show no causal relationship” and build 

a quick filter. We can pairwise calculate the Pearson’s 

correlation coefficient, the Mann-Whitney U Test, the Chi-

Square Test of Independence for categorical variables, between 

a large number of predictors and only one response variable for 

preliminary filtering, and remove the predictors if the absolute 

value of the correlation coefficient is smaller than some 

threshold). These simple statistics can be calculated very 

quickly and filter out a bunch of uncorrelated variables quickly. 

However, using correlation test to remove uncorrelated 

predictors assumes that we consider only the main effect of each 

individual predictor and ignore the interaction effect among the 

predictors. In practice, we can also conduct the design of 

experiment (DOE) [46] to confirm the main effect of individual 

variable and the interaction effects among multiple variables 

after the quick filter. 

 

Pitfall 3. Does the selected variable not show the physical 

causal relation? 

That is, data-driven ML/DS approach investigates the 

“correlation” among variables through the statistic calculation 

(eg. correlation coefficient) or model training/fitting process 

(eg. ordinary least square, OLS) to identify the significant 

variable. The correlation built by ML/DS does not imply the 

causal relation between variables particularly in the physical or 

chemical sciences. Thus, there statistically-selected variables 

may not be interpretable via engineering validation. 

 

Protocol 3. The feature selection should be an iterative 

procedure between data scientists and engineering validation. 

Each iteration provides the selected variables for engineering 

validation, and we can remove some of the variables without 

physical meanings, and then re-run the feature selection 

technique with the remaining selected variables, re-identify the 

important variables and re-send them for engineering 

validation. In general, three iterations are sufficient for the 

selected variables to converge. Note that if there are so many 

variables selected (more than 100) in the first round, data 

scientists may provide the number of selected variables less 

than 20-30 to engineers in each round since it may take time to 

investigate the causal relationship by doing experiments or 

calling suppliers. When we cannot confirm a selected variable 

by physical checking, we can keep it for the next iteration. 

Finally, the knowledge management (KM) of these selected 

features is suggested to for future tutoring. 

 

Pitfall 4. How to enhance the interpretability between 

predictors and response variable?  

For a complicated nonlinear data pattern, we can use the support 

vector machine (SVM) [47] /neural network [48] [24] /deep 

learning [25] to build the function/relationship between 

predictors and response variable. While these powerful ML/DS 

techniques can improve the prediction accuracy, they can also 

undermine the interpretability of the relationship between 

predictors and response variable (i.e. a black box) [49]. 

 

Protocol 4. To address the issue, we may ask a question first: 

is it necessary to make all ML/DS techniques explainable in real 

applications? In some cases, we may just treat ML/DS as a 

module/unit/subfunction or a small part in a whole analysis 

flow, and thus emphasize input and output of the module rather 

than how does it process inside the module. Recently, the 

explainable artificial intelligence (XAI) arises and is helpful to 

enhance the interpretability [50] [51]. Another useful method, 

so-called “divide-and-conquer” strategy [52] [53], can be 

suggested to dissolve a complicated nonlinear data pattern. In 

the “divide” phase, we decompose the data pattern into several 

relatively simple or regular sub-patterns, and in the “conquer” 

phase, we can build several simple models/weak classifiers to 

fit each sub-pattern and improve the interpretability, 

respectively. The following examples of time-series panel 

datasets suffice. For the signal processing, we can apply the 

empirical mode decomposition (EMD) and Hilbert spectral 

analysis to generate a collection of intrinsic mode functions 

(IMFs) [54]. These IMFs are practically orthogonal and present 

the instantaneous frequencies regarding the local properties of 

the data we can then use to explore the physical interpretations 

of the nonlinear non-stationary dataset. For economics or 

statistics, we can decompose a time-series panel data (e.g., oil 

price over past several decades) into four sub-patterns: “Trend”, 

“Cyclic (long cycle)”, “Seasonal (short cycle)” and “Random 

Noise” [55]. Figure 1 shows a “detrending” time series 

(weekly) dataset of Brent Oil Prices from June 26, 1988 to 

March 31, 2019. Then we can suggest some simple models to 

fit these sub-patterns, such as characterizing “Trend” by 

regression or SVM, “Cyclic/Seasonal” by autoregressive 

integrated moving average (ARIMA) [56], generalized 

autoregressive conditional heteroskedasticity (GARCH) [53], 

or some trigonometric functions, and “Noise/Residual” by 

neural networks. The feature selection can also be applied to 

these sub-patterns. Other techniques for improving the 

interpretability include clustering [57], time series 

segmentation [58] [59], and sliding window/moving average 

filter [60]. 
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Figure 1 Time series decomposition of oil prices 1988-2019 

 

Pitfall 5. How to handle when transforming categorical variable 

into too many dummy variables?  

Dummy variables are binary variables which can be generated 

from the categorical variable and represent mutually exclusive 

categories. Each of the possible values of a categorical variable 

is referred to as a level. Typically, we can transform one 

categorical variable with 𝐿 levels  into 𝐿 − 1 dummy variables 

to avoid the multicollinearity issue [61]. In a categorical 

variable, its one dummy variable represents some categorical-

level effect of absence or presence which is expected to shift 

the outcome upward or downward. Not every dataset with 

categorical variables needs dummy variable transformation 

before we build it into the classification/prediction models; “it 

depends” on the underlying assumptions or characteristics of 

the classification/prediction models we use. Some ML/DS 

packages can handle the categorical variables well and 

automatically in the classification/prediction models. However, 

if one categorical variable has a very large number of levels 𝐿 

(e.g., a recipe or parts in some manufacturing systems), then too 

many dummy variables could introduce the curse of 

dimensionality, i.e., “for model training process the number of 

observations required exponentially grows to estimate the 

function or model parameters” [26]. 

 

Protocol 5. To avoid generating too many dummy variables, 

three tips are suggested in practice. First, we can use concept 

hierarchy, which can reduce the data by grouping and replacing 

low-level concepts with high-level concepts, or combining 

several levels with a similar concept into one higher level [62], 

such as merging tools into tool groups or merging products into 

product groups. Second, we can shorten the data-collection 

periods, which can reduce the number of dummy variables 

generated from the categorical variables (eg. recipe). Long 

data-collection periods (eg. many types of recipes in one year) 

challenge the model training process; in particular, when the 

mix of products change several times to meet customer demand 

fluctuations. This unstable nature will undermine the prediction 

accuracy. Third, we can remove the level shown only once in 

the categorical variable, based on the idea that the level cannot 

be repeatable or re-validated. In practice, there are many levels 

that are shown only once which can confuse the model training 

and reduce the prediction accuracy (e.g., special recipes 

generated by an engineering experiment or pilot-runs of a 

special product). From a scientific aspect, these levels do not 

provide any evidence of repeatability and reproducibility, and 

thus they cannot be used to train the ML/DS model. 

 

Pitfall 6. Many missing values in one variable/column (or 

observation/row)  

The missing value imputation technique is based on finding 

“the relationship from other columns (or rows) for imputing 

missing value”. For details and methods, see [63] and [64]. 

Here, we focus on if there are many missing values in one 

column (or raw) (eg. missing over 50%). 

 

Protocol 6. Generally, if engineering validation confirms that a 

variable is important, it is rare to see many missing values in 

this column. Once we see some variables with many missing 

values (e.g., over 50%), we can remove the column since filling 

out 50% missing values is unreliable. However, there is an 

example, if one variable 𝑋70  with many missing values is 

removed but it is highly correlated with 𝑋14  which has no 

missing values (i.e., using existing values in 𝑋70 calculates the 

correlation coefficient between these two variables). After we 

use feature selection, if 𝑋14 is selected as an important variable 

but with poor interpretation, we need to check the causal 

relation/physical meaning of 𝑋70. 

 

Pitfall 7. Merging data tables and handling many missing 

values after the merge.  

Since information systems and sensors collect raw data in 

diverse formats (e.g., analog and digital signals, sampling rates, 

etc.) across many divisions, data analysts have developed 

different methods to manage the continuous streams of big data. 

In the data merge process, we can identify the “key” (such as 

LotID, MachineID) or “composite key” (such as 

LotID_Date_Time_Recipe combining four variables) and use 

them to integrate the data of interest into one table. Generally, 

the data merge integrates two types of data tables: event-based 

records and monitoring-based records. The event-based dataset 

records when an event triggers, and the monitoring-based 

dataset records periodically. In the data preprocessing, we can 

merge these two types of data tables into a one table for easier 

analysis. However, the data recording mechanisms are very 

different in these two, which one should be the “main” table to 

concatenate the other type of table? 

 

Protocol 7. Which table should be the main table? It depends 

on the problem we need to solve. Generally, we use the event-

based record as the main table when we are troubleshooting, 

because we want to find the event that causes a machine failure. 

We use the monitoring-based record as the main table when we 

need to analyze a machine’s operation over a defined period for 

facility/energy/process monitoring. Table 2 lists the differences 

between the two records. 

If the event-based record is our main table, we can 

concatenate the data by nearest time, roll-forward, or roll-

backward. Nearest time indicates that the new variable in the 

other table is merged into the main table by the corresponding 

key with respect to the closest time, regardless of what occurs 

before/after the event. Roll-forward merges the new variable in 
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the other table into the main table before the event occurs (i.e., 

it rolls the time of the new variable forward to meet the event-

based record, and we fill out the closest record in the past).; 

Roll-back merges the new variable in the other table into the 

main table immediately after the event. 

Table 2 Comparison of event-based and monitoring-based data 
 Event-based Record 

as Main Table 

Monitoring-based 

Record as Main Table 

Data 

recording 

Event triggers 

recording the data 

Record data 

periodically 

Example Equipment parameter 

adjustment/tuning 

Temperature sensing 

per second 

Table 

characteristics 

before merge 

Records with 

relatively fewer or 

sparse samples 

Records with a more 

complete dataset 

Pros after 

merge 

Fewer missing values Observe the periodic 

change 

Cons after 

merge 

No data in a long 

period 

Many missing values 

Methods Nearest time 

Roll-forward/Roll-

back 

Nearest time 

Roll-forward/Roll-back 

Purpose Troubleshooting Process/facility/energy 

monitoring 

 

 In practice, data table merges can also generate missing 

values. After removing the columns or rows by data 

preprocessing, the sample size could become fewer and may 

affect the model training process and its prediction 

performance. There is a tip suggested here. After using the 

processed data for feature selection and the important variables 

are selected, to increase the number of samples we can turn back 

and repeat the data merging process again with these important 

variables only. The results show that our merged table has fewer 

missing values because the important variables in each 

information system usually have relatively complete data in the 

past long-run development.  

 

Pitfall 8. Does the multicollinearity problem matter? 

The multicollinearity problem increases the variance of the 

coefficient estimate of one predictor in a multiple regression 

model because it can be linearly predicted from the other 

predictors. In this case, the coefficient is unstable and may 

change erratically in response to a small change in the dataset. 

It implies a difficulty in the interpretation of the coefficient. In 

a worst case, the multicollinearity problem causes a switch in 

the sign of a coefficient, which in turn leads to a model 

misspecification or model invalidation. We can detect the 

presence of multicollinearity by (1) observing a large variation 

of estimated coefficient when one predictor is added or 

removed; (2) calculating the variance inflation factor (VIF) 

which is larger than 10 for each individual variable or when the 

average VIF is larger than 6 for all predictors in a regression 

model [65] [66]. 

 

Protocol 8. Addressing multicollinearity problem depends on 

(1) your purpose of prediction and (2) the prediction model you 

choose. Basically, the fact that we ignore checking 

multicollinearity in ML/DS techniques isn't a consequence of 

the algorithm but it's a consequence of the goal. Since 

multicollinearity issue does affect the predictive power but bias 

the estimated coefficient in the regression, for the prediction 

purpose, we may not be interested in the coefficients but could 

put more focus on the loss function (e.g., mean squared error, 

MSE), AUC (i.e., area under the receiver operating 

characteristic (ROC) curve), or F1 score (i.e. the harmonic 

mean of precision and recall) [67], which significantly affect 

the prediction performance. If the interpretation of predictor is 

important to clarify the causal relation, the regression model is 

suggested. In such cases, we can apply the shrinkage method, 

also known as regularization technique (e.g., ridge regression 

[68] or LASSO [34] [50] which can reduce the variance of 

coefficients although at a slight increase in bias due to a bias-

variance tradeoff. However, LASSO can compulsorily shrink 

the coefficients of the predictor to 0 by adjusting the penalty 

parameter and thus improve generalization.  

 In addition, different ML/DS models we choose can cause 

different degrees of influence by multicollinearity on the 

analysis results. For example, a random forest approach, which 

randomly resample via bootstrap and randomly select the 

variables, is applied to build several subsets of data and bag the 

decision tree by out-of-bag validation [27]. That is, 

randomization builds many trees to form a forest, where the 

trees can be constructed by classification and regression trees 

(CART) [35], Chi-square automatic interaction detector 

(CHAID) [69] [70] [57], or C4.5/C5.0 with information gain 

[71] [72], etc. The performance of branching considers the 

information theory or the purity in the child node, and thus “IF-

THEN” rules are generated for interpretation without using the 

coefficients of predictors in regression. In this case, highly-

correlated or collinear variables does not significantly 

undermine the performance of the random forest; in particular, 

we can directly remove one if two collinear variables provide 

the same purity of child nodes. Similar conclusion 

“multicollinearity does not affect the model performance 

significantly” can be applied to such as SVM, neural networks, 

or deep learning, which put more focus on the prediction 

accuracy rather than the interpretability.  

In practice, removing highly-correlated variables can 

effectively reduce the number of predictors/neurons used in the 

model (eg. neural network/deep learning) and then 

consequentially reduce the number of parameters which need to 

be estimated to avoid the curse of dimensionality. In most 

practical cases, multicollinearity is not always a problem if the 

prediction model shows excellent accuracy and robustness. But 

it deserves an investigation when we attempt to identify a 

correct model, enhance the physical interpretation of the causal 

relation, and reduce the number of variables. After all, in 

practice, less variables we use, lower cost we spend for model 

maintenance and management. 

 

Pitfall 9. Does a higher prediction accuracy support a better 

decision-making?  

First, if we consider predicting a continuous value of a response 

variable, there is nothing related to right or wrong since it 

emphasizes the accuracy according to the R-squared or MSE. 

However, to classify an observation into distinct classes (i.e. 

labels) involves misclassification and generates a confusion 

matrix with a Type I error, also called false positive/false alarm, 

and a Type II error, also called false negative/miss. There is an 

example in the manufacturing process. If we collect the 
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equipment parameters and sensor data to predict the continuous 

response variables about the quality, yield, precision, thickness, 

metrology measure, etc., then in this case, the prediction result 

is only related to accuracy. However, once we can add the upper 

control limit (UCL) and lower control limit (LCL) for process 

monitoring or quality inspection, in this case Type I (claim out-

of-control but truly in-control) and Type II (claim in-control but 

truly out-of-control) may occur. Figure 2 illustrates the 

example. 

 

  
(a) continuous-value prediction         (b) classification 

Figure 2 Distinguish prediction from classification 

 

 Either error type can affect the decision-making process by 

assessing the “decision risk”. Figure 3 shows a manufacturing 

example of building two prediction models for classification of 

128 lots. The performance metrics include accuracy, 

recall/sensitivity, specificity, prevision, F1-score, and AUC 

(area under ROC curve). Based on these metrics, the result 

shows that Model B presents better accuracy than Model A, and 

thus Model B is used to predict the metrology measure and 

quality inspection. However, if we further investigate the two 

error types in the confusion matrices of the two models, we can 

find that there are fewer Type II errors in Model A is less than 

in Model B. In most manufacturing cases, the monetary value 

(i.e., cost) of a decision risk regarding a Type II error (i.e., 

prediction showing in-control but truly out-of-control) is higher 

than the risk of a Type I error because a Type II error will lead 

the manufacturer to ship the product and receive a customer 

complaint later. Therefore, the decision maker may prefer to 

choose Model A, which lose some accuracy, to offset a larger 

decision risk. In conclusion, a Type I error or a Type II error 

involves a tradeoff.  

 
Figure 3 Classification results of two MS/DS models 

 

Protocol 9. The prediction model (i.e., predictive analytics) and 

decision risk (i.e., prescriptive analytics) complement each 

other.  As an example, we can build the ML/DS model to 

estimate the probability distribution of in-specification and out-

of-specification with respect to product quality inspection, and 

find an in-specification with the probability 0.2 and an out-of-

control with the probability 0.8. Now we need to decide 

whether to ship or to scrub/rework. Table 3 lists the decision 

risks. If the product is in specification, we can ship the product 

at a cost equal to $0, or scrub/rework at a rework cost including 

material or labor equal to $20. If the product is out of 

specification, we can ship the product and receive customer 

complaint at a cost equal to $200, or scrub/rework in house at a 

cost equal to $20. Based on the calculation of the expected 

costs, we finally decide to scrub/rework.   

Table 3 Payoff/cost matrix of decision risk 
True condition Ship product Scrub/Rework 

In-specification 

(with probability 0.2) 

$0 $20 (material/labor-

hour for rework) 

Out-of-specification 

(with probability 0.8) 

$200 

(customer 

complaint) 

$20 

Expected cost $160 $20 

Decision: Scrub/Rework 

 

In fact, the Scrub/Rework decision does not totally depend 

on the probability of out-of-control 0.8, but also depends on the 

results of decision risk (i.e., payoff/cost). Take a 

counterexample, where the material usage and labor hour for 

rework costs $2000 rather than $20; should we still decide to 

Scrub/Rework? Based on this case, both the prediction of in-

specification/out-of-specification (i.e., estimating the 

probability distribution) and the decision risk measure (i.e., 

payoff/cost) are important. The former calculates probability 

distribution by ML/DS and the latter investigates the 

payoff/cost by expert/domain knowledge/decision maker’s 

preference/sensitivity analysis [73]. Thus, we can conclude that 

prediction (i.e. predictive analytics) and decision risk (i.e. 

prescriptive analytics) are complementary.    

 As we have all known that prediction cannot be totally 

correct, and thus we need to consider the decision risk. 

Predictive analytics uses the data to predict what will happen 

and prescriptive analytics uses it to prescribe what should be 

done [74]; in particular, operations research (OR) and 

optimization techniques are commonly used for prescriptive 

analytics. There is an example of prescriptive analytics. Lee and 

Chiang (2016), who empirically studied aggregate capacity 

planning in the TFT-LCD industry, proposed a two-phase 

framework consisting of demand forecasting in the phase 1 and 

capacity decision in phase 2. Figure 4 shows three demand 

forecast models for phase 1. Three models suggested increasing 

or flat demand forecasts of the technology node A in the future; 

however, demand drops truly. In Figure 4, if we see a short 

increasing trend just before the validation dataset, there is no 

one believing the dropping demand in the future; that is, the 

three prediction models are justified. To address the inaccurate 

demand forecasts, Lee and Chiang investigated the decision 

risks (or called the regrets in their study) and proposed three 

capacity decision models including expected value model, 

minimax regret model [75], and stochastic programming model 

[76] to develop a robust capacity plan for phase 2. Their results 

showed that the capacity decision corrected the poor demand 

forecast in phase 1, which and balanced between capacity-

shortage risk and capacity-surplus risk; in particular, the 

suggested capacity plan was robust with little fluctuation.    

In practice, prescriptive analytics provides three benefits to 

optimize decision making: (1) assessing decision risk and 

balancing the tradeoff between different types of risks (e.g., 
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Type I error and Type II error); (2) solving other problems 

beyond the scope of predictive analytics such as multi-objective 

production scheduling [78], inventory management [15], 

material investigation [79], project management [80], vehicle 

routing [81], financial portfolio optimization [82], vendor 

selection and order allocation [83], and decision analysis [73]; 

and (3) considering limited resources (eg., men, machines, 

materials, methods, measurements, environment). Thus, 

prescriptive analytics complements predictive analytics to 

enhance the connection with decision-making process.  

 
Figure 4 Three demand forecasting models [77] 

 

Pitfall 10. How reliable is the conclusion derived from ML/DS? 

Is the conclusion or prediction results derived from ML/DS 

techniques reliable or usually true? How to criticize the 

conclusion derived from ML/DS? To answer the question, we 

need to know if ML/DS is an induction method or a deduction 

method. Induction is an inference process from specification 

(i.e., sample) to generalization (i.e., model) and deduction is an 

inference process from generalization to specification. In most 

ML/DS techniques, we can train a generalized model after 

investigating the patterns from each specific sample (i.e., 

induction), and then plug in the new data for prediction by using 

the generalized model, assuming the new data satisfy all of the 

model’s underlying assumptions (i.e., deduction). Using a 

linear regression as an example, based on the dataset, the 

ordinary least squares (OLS) estimator in step 1 is an 

optimization applied to build a generalized linear equation 

which describes the pattern of the training dataset (i.e., 

nonparametric induction), and  the regression line in step 2 

predicts the new data (i.e., parametric deduction) according to 

all the underlying assumptions satisfied such as linearity 

relationship between predictors and response variable, 

independence of the errors, normality of the error distribution, 

homoscedasticity, lack of perfect multicollinearity [84]. In fact, 

this two-step framework (i.e. induction for training and 

deduction for prediction) can generally applied to most of 

ML/DS techniques. 

 

Protocol 10. We know that the conclusion derived from 

induction may not be true, whereas the result derived from 

deduction must be true if the given premise/assumption is true 

[85]. Here, we learn how to argue induction and deduction, 

respectively. For the induction step, since the induction is a 

transformation from specification to generalization, to criticize 

the result derived from induction we can argue the collected 

data/case/sample/observation, for example: 

⚫ Find the counterexample; 

⚫ Argue the representativeness of collected samples; and 

⚫ Argue the small/bias sample size. 

Therefore, we focus on arguing the “justification of model 

training process”; in particular, the samples used for training. 

For example, a prediction model trained by the R&D products 

is problematic to be used to predict the case of normal products 

for mass production. For another example, given a different 

product-mix of every six months, it is doubtful that we can train 

a prediction model with the first six-months of dataset and then 

use it to predict the next six months. 

 For the deduction step, since the deduction is a 

transformation from generalization to specification, to criticize 

the result derived from deduction we can argue the 

assumption/premise, for example: 

⚫ Violate the assumptions in premise (which may be derived 

from induction, e.g., OLS); 

⚫ Find other causes which may derive the same conclusion;  

⚫ Argue the causal relationship (necessary conditions such as 

high correlation, sequence, and coherence) 

Therefore, we focus on arguing the “justification of premise and 

causal relation”; in particular, the assumptions violated. For 

example, we cannot use linear regression for prediction if it 

violates linearity, independence, normality, homoscedasticity, 

etc. For example, high correlation does not imply causal 

relationship and usually ML/DS can only build a correlation 

without physical interpretation.  

 

Pitfall 11. How to start the ML/DS works? How to collect 

dataset? How much data we need? 

Clearly, the data we collect depends on the problem to be 

solved. In general, manufacturers do not maintain or collect 

specific datasets unless a problem arises. 

 

Protocol 11. Rather than collecting massive amounts of data, 

we suggest collecting important dataset first, that is, an “event” 

which caused a big loss before. We can collect information 

about the problem in order to avoid the event occurring again. 

To collect data systematically, we can use an entity-relationship 

(ER) model to describe the interrelationship among the factors 

and use it to build the foundation of a specific domain 

knowledge [86]. It is usually used for the design of database 

management system (DBMS), i.e. relational database. In fact, it 

is important to update the E-R model when adding or deleting 

one column in the table of DBMS. In the long run lots of 

columns added or deleted without updating the E-R model can 

lead to a catastrophe for system integration in practice. Note 

that when a relational database suffers in a big data 

environment, we can suggest NoSQL (not only structured query 

language), also known an unstructured database, for parallel-

distributed computing, schema free, or horizontally scalable 

system [87]. 

How much data we need? In fact, data heterogeneity is much 

more critical than big. Data heterogeneity not only helps us gain 

a better understanding of big data, but also provides a more 

comprehensive view leveraging data from a variety of real 

applications to enhance the prediction accuracy. In addition, 

data volume usually depends on the length of time interval in 

data collection process. Manufacturing systems tend to use long 

data-collection periods for investigating the “process nature” 

and building a “generalized” prediction model whose 
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parameters or coefficients of predictors can present a trend or a 

general response; however, a short-period data is used to build 

a “specific” prediction model which can present a more precise 

causal relation to support troubleshooting/process diagnosis in 

this specific period. This is a trade-off about “generalization 

versus specification” of building your prediction models. 

 How to start the ML/DS works for manufacturing system in 

the very beginning? Figure 5 shows three phases for improving 

manufacturing systems: Gemba Kaizen, Data Science, and 

System Integration, and each phase is characterized by 

Problem, Method, and Performance, respectively. 

Gemba Kaizen emphasizes observing, understanding, and 

improving the manufacturing process in the shop floor. Gemba 

Kaizen investigates problems such as muda (i.e. waste), work-

in-process (WIP), bottleneck, missing operation (MO), or labor 

capability. Lean production [21], work study [88], facility 

layout [89], and process improvement [90] are the principles, 

philosophies, and methods introduced for training labor and 

fully identifying the problem. In this phase we can develop the 

standard operating procedure (SOP), eliminate the waste (e.g., 

WIP or unnecessary motions), start collecting data and 

understand the shop-floor dynamics., formulate the 

performance metrics for management. In fact, this phase 

contributes to the benefits of understanding the characteristics 

of the manufacturing system and collecting dataset (even 

manually) prepared for next phase.  

 

 
Figure 5 Three phases for improving manufacturing systems 

 

The second phase Data Science emphasizes 

predictive/prescriptive analysis by using IT (information 

technology) and ML/DS techniques, and support the business 

process automation, operations automation, and engineering 

automation. Since parts of data system and IT infrastructure 

have been built in the previous phase, we collect and use data 

for analytics such as demand-supply mismatch, capacity 

planning, troubleshooting, scheduling, equipment reliability, 

customer complaints, etc.; in particular, to develop individual 

information system addressing each specific problem. Methods 

involve optimization [74], statistical process control (SPC) 

[46], machine learning [26], statistical learning and data mining 

[50], etc. In this phase we can build several information systems 

such as fault detection & classification (FDC), resource 

portfolio optimization, customer-relationship management 

(CRM), etc. to provide the analysis results and automation 

prepared for next phase usage. Due to garbage-in garbage-out, 

the performance generated from this phase significantly 

depends on the data quality from previous phase, and thus it is 

necessary to keep monitoring and verifying the data quality in 

Gemba Kaizen phase according to the results of ML/DS 

analysis.  

The third phase “System Integration” emphasizes synergy of 

manufacturing intelligence by integrating various information 

systems, and supporting a comprehensive understanding of the 

manufacturing system for business sustainability. Since 

different types of analysis results are obtained from previous 

phase, the analysis results can be merged to support several 

comprehensive integrations such as facility energy 

consumption, emission & recycle monitoring, data 

inconsistency, prognostics & health monitoring (PHM) [13], 

product differentiation, etc. An integration needs the data and 

analysis results from multiple sources to present the 

“synergistic effect” through big data [1] [91], cyber-physical 

systems (CPS) [2], internet of things (IoT) [92] [93], cloud 

manufacturing [94], on-line learning and optimization [95], 

value and supply chain integration [96] [97] [98] [99], decision 

science [73], etc. In this phase we are inspired by the 

information technology (IT) and motivate manufacturing 

revolution such as new business model, dashboard of facility 

monitoring, price maintenance and cost advantage, green & 

sustainability, etc. to support the business strategy development 

and technology migration. Note that due to garbage-in garbage-

out, the performance generated from this phase significantly 

depends on the data “analysis” from previous phase, and thus it 

is necessary to re-check/adjust/update the data science models 

and analysis results with newly dataset in previous “Data 

Science” phase according to the results of system integration. 

 

Pitfall 12. How to develop roadmap and future works for smart 

factory? 

What is the roadmap and future works for smart factory? 

What’s the methodology we should use to improve the 

manufacturing systems? How to investigate the quality, yield, 

cost and profit when ramping the fab? 

 

Protocol 12. The future of manufacturing continues to be 

studied intensively; see [1], [100], [2], [101] [102] for details. 

In practice, moving to a smart factory environment depends on 

the characteristics of each manufacturing system (e.g., IT 

infrastructure, educational level of labor, degree of automation, 

and product development). Besides to the roadmap like Figure 

5, Figure 6 shows a three-phase product life cycle, neglecting 

the Decline phase, and the methodologies corresponding to 

yield and cost. Phase 1 (R&D) involves product development 

(eg. new-tape-out in high-tech industry), and the engineering 

parameter optimization and design of experiments (DOE) with 

limited datasets. Phase 2 (Growth) attempts to reduce the lead 

time for ramping-up the fab for product launch and time-to-

market, particularly production scheduling [16], tool matching, 

and SPC for cycle time reduction and yield enhancement. Phase 

3 (Mature) enjoys the economies of scale with excellent 

equipment reliability and mass production with low-cost and 

high-quality, particularly using big data volume that contributes 

to the virtual metrology (VM) [11], preventive/predictive 

maintenance (PM/PdM) [103], automated optical inspection 

(AOI) [104]. Figure 6 also encourages moving downstream 
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labor force (e.g., quality assurance division) toward upstream 

to address R&D product design and ramping-up problems since 

uncertainties in the upstream bring difficulties but also 

opportunities for value creation. 

 
Fig. 6 Product development, yield, cost, and methodologies 

(revised from [92] [105]) 

 

 For the future works of smart factory, a financial aspect can 

also provide insights. Figure 7 shows the decomposition of a 

key performance indicator (KPI) hierarchy related to return on 

equity (ROE). ROE measures business performance like the 

DuPont return on investment (ROI) formula [106] can be 

decomposed into three fundamental indices: profit margin 

which measures the manufacturer’s ability to generate sales 

revenue and save cost, asset turnover which measures how 

effectively the manufacturer can generate revenue using asset 

investments, and financial leverage which measures the 

manufacturer’s ability to use debt borrowed from stockholders 

to purchase assets. The first two indices can be associated with 

the manufacturing KPIs such as WIP, yield, cycle time, and 

bottleneck. Management’s daily decisions on scheduling, 

product-mix, mean-time-to-repair (MTTR), mean-time-

between-failure (MTBF), maintenance, etc., affect each KPI. 

These decisions coordinate and consume the manufacturing 

resources to improve the manufacturing system. The KPI 

hierarchy provides hints for building a big data platform to 

answer: how the daily decision in shop floor responses to our 

financial indices finally. The smart factory will benefit as data 

scientists develop new platforms for measuring the economic 

value of manufacturers’ daily decisions.   

 

Fig. 7 KPI hierarchy 

3. Conclusion 

This study describes the most common pitfalls and the 

potential solutions (protocols) encountered by data scientists in 

manufacturing systems. In fact, the answer to most of 

management issues in practice is “it depends” and thus it 

motivates this study to discuss the pitfalls and protocols. This 

study puts more focus on the practical aspect. For example, 

though ML/DS techniques provide powerful tools to solve the 

problems in real settings, ROI should be clarified in practice 

simultaneously to ensure a successful ML/DS project. Thus, it 

is critical to choose one substantial topic for improving the 

manufacturing system essentially and physically. In particular, 

the developed algorithm and analytics results should be 

embedded in the engineering automation system which is useful 

to realize our “ideas” substantially. 

 Finally, we present how the role of the manufacturing data 

science triggers the technology migration. Figure 8 illustrates 

the technology migration from big data to breeding data. The 

manufacturer evolves from MANUFACTURING(MFG).com, 

DATA.com, to INNOVATION.com and from problem-

oriented, analytics-oriented, to idea-oriented. The three-phase 

iterative cycle triggers a technology migration to the next 

generation; in particular, data play an important role in this 

cycle to benefit the business growth and profitability. 

Furthermore, big data aggregated through the business 

evolution pushes the company moving forward and seeking a 

new business model to maintain the business core competence. 

Even similar manufacturers can use data in different way and 

generate different types of new technologies. Thus, beyond the 

big data, a business starts breeding data just like we breed kids 

for the future hope.  

 
Fig. 8 Technology migration from big data to breeding data 
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