Skip to main content
Log in

Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this study, the innovative compact heat exchanger (CHE) newly designed and manufactured using metal additive manufacturing technology were numerically and experimentally investigated. Some experiments were carried out to determine the hot water (\(hw\)) and cold water (\(cw\)) outlet temperatures of CHE. As a result of the CFD analysis, the average outlet temperatures of the \(hw\) and \(cw\) flow loops on the CHE were calculated as 48.24 and 35.38 °C, respectively. On the other hand, the experimental outlet temperatures were measured as being 48.50 and 35.72 °C, respectively. The studies showed that the numerical and experimental results of the CHE are compliant at the given boundary conditions. Furthermore, it was observed that the heat transfer rate of the CHE with lower volume is approximately 47.7% higher than that of standard brazed plate heat exchangers (BPHEs) produced by traditional methods. More experiments conducted on the CHE will inevitably have a negative effect on its manufacture time and cost. Thus, various models were developed to predict the results of unperformed experiments using the machine learning methods, ANN, MLR and SVM. In the models developed for each experiment, the source and inlet temperatures of \(hw\) and \(cw\), respectively, and the volumetric flow rate of \(cw\) were selected as input parameters for the machine learning methods. Thus, the \(hw\) and \(cw\) outlet temperatures of the CHE were estimated on the basis of these input parameters. The best performance was achieved by ANN. In addition, there is no significant performance difference between other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Ghobari, H. M., El-Marazky, M. S., Dewidar, A. Z., & Mattar, M. A. (2018). Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques. Agricultural Water Management, 195, 211–221. https://doi.org/10.1016/j.agwat.2017.10.005.

    Article  Google Scholar 

  • Bai, Y., Chaudhari, A., & Wang, H. (2020). Investigation on the microstructure and machinability of ASTM A131 steel manufactured by directed energy deposition. Journal of Materials Processing Technology, 276, 116410. https://doi.org/10.1016/j.jmatprotec.2019.116410.

    Article  Google Scholar 

  • Bhatt, P. M., Kabir, A. M., Peralta, M., Bruck, H. A., & Gupta, S. K. (2019). A robotic cell for performing sheet lamination-based additive manufacturing. Additive Manufacturing, 27, 278–289. https://doi.org/10.1016/j.addma.2019.02.002.

    Article  Google Scholar 

  • Bineli, A. R. R., Peres, A. P. G., Jardini, A. L., & Maciel Filho, R. (2011) Direct metal laser sintering (DMLS): Technology for design and construction of microreactors. In 6th Brazilian Conference of Manufacturing Engineerin, Caxias do Sul, RS, Brazi, April 11–15 2011

  • Bollegala, D. (2017). Dynamic feature scaling for online learning of binary classifiers. Knowledge-Based Systems, 129, 97–105. https://doi.org/10.1016/j.knosys.2017.05.010.

    Article  Google Scholar 

  • Brooks, H., & Molony, S. (2016). Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Materials & Design, 90, 276–283. https://doi.org/10.1016/j.matdes.2015.10.123.

    Article  Google Scholar 

  • Chabot, A., Laroche, N., Carcreff, E., Rauch, M., & Hascoët, J.-Y. (2019). Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. Journal of Intelligent Manufacturing, 31, 1191–1201. https://doi.org/10.1007/s10845-019-01505-9.

    Article  Google Scholar 

  • Chemingui, H. (2013). Resistance, motivations, trust and intention to use mobile financial services. International Journal of Bank Marketing, 31(7), 574–592. https://doi.org/10.1108/IJBM-12-2012-0124.

    Article  Google Scholar 

  • Chollet, F. (2017). Deep learning with Python. Shelter Island: Manning Publications.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Cui, J., & Cui, Y. (2015). Effects of surface wettability and roughness on the heat transfer performance of fluid flowing through microchannels. Energies, 8(6), 5704–5724. https://doi.org/10.3390/en8065704.

    Article  Google Scholar 

  • Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146. https://doi.org/10.1016/j.addma.2018.12.013.

    Article  Google Scholar 

  • Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. United States: Basic Books.

    Google Scholar 

  • Dong, L., Makradi, A., Ahzi, S., & Remond, Y. (2007) Finite element analysis of temperature and density distributions in selective laser sintering process. In Materials science forum, 2007 (Vol. 553, pp. 75–80): Trans Tech Publ

  • Ebrahimzadeh, E., Wilding, P., Frankman, D., Fazlollahi, F., & Baxter, L. L. (2016). Theoretical and experimental analysis of dynamic plate heat exchanger: non-retrofit configuration. Applied Thermal Engineering, 93, 1006–1019. https://doi.org/10.1016/j.applthermaleng.2015.10.017.

    Article  Google Scholar 

  • Erbay, L. B., Uğurlubilek, N., Altun, Ö., & Doğan, B. (2013). Compact heat exchangers. Engineer & The Machinery Magazine, 54(646), 37–48.

    Google Scholar 

  • Ermis, K. (2008). ANN modeling of compact heat exchangers. International Journal of Energy Research, 32(6), 581–594.

    Article  Google Scholar 

  • Fluent, A. (2015). Ansys Fluent R16.1 Theory guide. Canonsburg, PA: Ansys Inc.

    Google Scholar 

  • Foroozmehr, A., Badrossamay, M., Foroozmehr, E., & Golabi, S. I. (2016). Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Materials & Design, 89, 255–263. https://doi.org/10.1016/j.matdes.2015.10.002.

    Article  Google Scholar 

  • Fragkaki, A., Farmaki, E., Thomaidis, N., Tsantili-Kakoulidou, A., Angelis, Y., Koupparis, M., et al. (2012). Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids. Journal of Chromatography A, 1256, 232–239. https://doi.org/10.1016/j.chroma.2012.07.064.

    Article  Google Scholar 

  • Garg, A., Panda, B., Zhao, D., & Tai, K. (2016a). Framework based on number of basis functions complexity measure in investigation of the power characteristics of direct methanol fuel cell. Chemometrics and Intelligent Laboratory Systems, 155, 7–18. https://doi.org/10.1016/j.chemolab.2016.03.025.

    Article  Google Scholar 

  • Garg, A., Sarma, S., Panda, B., Zhang, J., & Gao, L. (2016b). Study of effect of nanofluid concentration on response characteristics of machining process for cleaner production. Journal of Cleaner Production, 135, 476–489. https://doi.org/10.1016/j.jclepro.2016.06.122.

    Article  Google Scholar 

  • Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21, 517–528. https://doi.org/10.1016/j.addma.2018.04.005.

    Article  Google Scholar 

  • Hajabdollahi, H., & Seifoori, S. (2016). Effect of flow maldistribution on the optimal design of a cross flow heat exchanger. International Journal of Thermal Sciences, 109, 242–252. https://doi.org/10.1016/j.ijthermalsci.2016.06.014.

    Article  Google Scholar 

  • Han, X.-H., Cui, L.-Q., Chen, S.-J., Chen, G.-M., & Wang, Q. (2010). A numerical and experimental study of chevron, corrugated-plate heat exchangers. International Communications in Heat and Mass Transfer, 37(8), 1008–1014. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.026.

    Article  Google Scholar 

  • Hudák, R., Šarik, M., Dadej, R., Živčák, J., & Harachová, D. (2013a). Material and thermal analysis of laser sinterted products. Acta Mechanica et Automatica, 7(1), 15–19.

    Article  Google Scholar 

  • Hussein, A., Hao, L., Yan, C., Everson, R., & Young, P. (2013). Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology, 213(7), 1019–1026. https://doi.org/10.1016/j.jmatprotec.2013.01.020.

    Article  Google Scholar 

  • İpek, O., Kılıç, B., & Gürel, B. (2017). Experimental investigation of exergy loss analysis in newly designed compact heat exchangers. Energy, 124, 330–335. https://doi.org/10.1016/j.energy.2017.02.061.

    Article  Google Scholar 

  • Jiang, J., Xiong, Y., Zhang, Z., & Rosen, D. W. (2020). Machine learning integrated design for additive manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01715-6.

    Article  Google Scholar 

  • John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem. In Machine Learning Proceedings 1994 (pp. 121–129). Amsterdam: Elsevier.

  • Kan, M., Ipek, O., & Gurel, B. (2015). Plate heat exchangers as a compact design and optimization of different channel angles. Acta Physica Polonica A, 12, 49–52. https://doi.org/10.12693/APhysPolA.128.B-49.

    Article  Google Scholar 

  • Kays, W. M., & London, A. L. (1984). Compact heat exchangers. New York: McGraw-Hill.

    Google Scholar 

  • Khudheyer, A. F., & Mahmoud, M. S. (2011). Numerical analysis of fin-tube plate heat exchanger by using CFD technique. Journal of Engineering and Applied Sciences, 6(7), 1–12.

    Google Scholar 

  • Kim, P. (2017). Matlab deep learning: With machine learning, neural networks and artificial intelligence. Berkeley, CA: Apress.

    Book  Google Scholar 

  • Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G.-H., Cho, J.-H., et al. (2020). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 31(2), 375–386. https://doi.org/10.1007/s10845-018-1451-6.

    Article  Google Scholar 

  • Lam, C., & Bremhorst, K. (1981). A modified form of the k–ε model for predicting wall turbulence. Asme Journal of Fluids Engineering, 103, 456–460.

    Article  Google Scholar 

  • Li, X., Jia, X., Yang, Q., & Lee, J. (2020). Quality analysis in metal additive manufacturing with deep learning. Journal of Intelligent Manufacturing, 31, 2003–2017. https://doi.org/10.1007/s10845-020-01549-2.

    Article  Google Scholar 

  • Manfredi, D., Calignano, F., Ambrosio, E. P., Krishnan, M., Canali, R., Biamino, S., et al. (2013b). Direct Metal Laser Sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications. Metallurgia Italiana, 105(10), 15–24.

    Google Scholar 

  • Narin, A., Isler, Y., & Ozer, M. (2014). Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance. Computers in Biology and Medicine, 45, 72–79. https://doi.org/10.1016/j.compbiomed.2013.11.016.

    Article  Google Scholar 

  • Nicolet, G., Eckert, N., Morin, S., & Blanchet, J. (2017). A multi-criteria leave-two-out cross-validation procedure for max-stable process selection. Spatial Statistics, 22, 107–128. https://doi.org/10.1016/j.spasta.2017.09.004.

    Article  Google Scholar 

  • Niu, X. D., Singh, S., Garg, A., Singh, H., Panda, B., Peng, X. B., et al. (2019). Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Frontiers of Mechanical Engineering, 14(3), 282–298. https://doi.org/10.1007/s11465-019-0526-1.

    Article  Google Scholar 

  • Özdamar, K. (2004). Paket programlar ile istatistiksel veri analizi (çok değişkenli analizler). Eskişehir: Kaan Kitabevi.

    Google Scholar 

  • Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. Sebastopol, CA: O’Reilly Media Inc.

    Google Scholar 

  • Paul, A., Mozaffar, M., Yang, Z. J., Liao, W. K., Choudhary, A., Cao, J., et al. (2019). A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes. In L. Singh, R. DeVeaux, G. Karypis, F. Bonchi, & J. Hill (Eds.), 2019 IEEE ınternational conference on data science and advanced analytics, Proceedings of the international conference on data science and advanced analytics (pp. 541–550).

  • Penumuru, D. P., Muthuswamy, S., & Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31(5), 1229–1241. https://doi.org/10.1007/s10845-019-01508-6.

    Article  Google Scholar 

  • Peyre, P., Rouchausse, Y., Defauchy, D., & Regnier, G. (2015). Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. Journal of Materials Processing Technology, 225, 326–336. https://doi.org/10.1016/j.jmatprotec.2015.04.030.

    Article  Google Scholar 

  • Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: An introduction (Vol. 68). Bellingham: SPIE Press.

    Book  Google Scholar 

  • Qi, Z. X., Wang, H. Z., Li, J. Z., & Gao, H. (2018). FROG: Inference from knowledge base for missing value imputation. Knowledge-Based Systems, 145, 77–90. https://doi.org/10.1016/j.knosys.2018.01.005.

    Article  Google Scholar 

  • Ranganayakulu, C., Luo, X., & Kabelac, S. (2017). The single-blow transient testing technique for offset and wavy fins of compact plate-fin heat exchangers. Applied Thermal Engineering, 111, 1588–1595. https://doi.org/10.1016/j.applthermaleng.2016.05.118.

    Article  Google Scholar 

  • Roberts, I. A., Wang, C. J., Esterlein, R., Stanford, M., & Mynors, D. J. (2009). A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. International Journal of Machine Tools & Manufacture, 49(12–13), 916–923. https://doi.org/10.1016/j.ijmachtools.2009.07.004.

    Article  Google Scholar 

  • Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Canada: Academic Press.

    Google Scholar 

  • Sarafraz, M. M., & Hormozi, F. (2016). Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Experimental Thermal and Fluid Science, 72, 1–11. https://doi.org/10.1016/j.expthermflusci.2015.11.004.

    Article  Google Scholar 

  • Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2016). Experimental study on turbulent flow and heat transfer in an air to water heat exchanger using perforated circular-ring. Experimental Thermal and Fluid Science, 70, 185–195. https://doi.org/10.1016/j.expthermflusci.2015.09.002.

    Article  Google Scholar 

  • Silbernagel, C., Aremu, A., & Ashcroft, I. (2019). Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing. Rapid Prototyping Journal, 26(4), 625–637. https://doi.org/10.1108/rpj-08-2019-0213.

    Article  Google Scholar 

  • Stathatos, E., & Vosniakos, G. C. (2019). Real-time simulation for long paths in laser-based additive manufacturing: A machine learning approach. International Journal of Advanced Manufacturing Technology, 104(5–8), 1967–1984. https://doi.org/10.1007/s00170-019-04004-6.

    Article  Google Scholar 

  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111–133.

    Google Scholar 

  • Tan, C. K., Ward, J., Wilcox, S. J., & Payne, R. (2009). Artificial neural network modelling of the thermal performance of a compact heat exchanger. Applied Thermal Engineering, 29(17–18), 3609–3617. https://doi.org/10.1016/j.applthermaleng.2009.06.017.

    Article  Google Scholar 

  • Tiryaki, S., & Aydin, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62, 102–108. https://doi.org/10.1016/j.conbuildmat.2014.03.041.

    Article  Google Scholar 

  • Tsopanos, S., Sutcliffe, C., & Owen, I. The manufacture of micro cross-flow heat exchangers by selective laser melting. In Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, NJ, United State, September 11–16 2005

  • Uğuz, S. (2020). Makine öğrenmesi teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü. Isparta: Nobel academic publish.

    Google Scholar 

  • Usta, Y., & Köylü, A. (2012). Yakıt hücrelerinde kullanılacak gözenekli paslanmaz çelik toz metal parçaların üretim parametrelerinin araştırılması. Journal of the Faculty of Engineering & Architecture of Gazi University, 27(2), 265–274.

    Google Scholar 

  • Ventola, L., Robotti, F., Dialameh, M., Calignano, F., Manfredi, D., Chiavazzo, E., et al. (2014). Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. International Journal of Heat and Mass Transfer, 75, 58–74. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.037.

    Article  Google Scholar 

  • Wang, C., Tan, X., Tor, S., & Lim, C. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538. https://doi.org/10.1016/j.addma.2020.101538.

    Article  Google Scholar 

  • Yang, Y., He, M., & Li, L. (2020). Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. Journal of Cleaner Production, 251, 119710. https://doi.org/10.1016/j.jclepro.2019.119710.

    Article  Google Scholar 

  • Zhao, D., & Guo, W. (2019). Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping. Journal of Intelligent Manufacturing, 31, 985–1002. https://doi.org/10.1007/s10845-019-01490-z.

    Article  Google Scholar 

  • Zheng, A. (2015). Evaluating machine learning models: A beginner’s guide to key concepts and pitfalls. Sebastopol, CA: O’Reilly Media.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Scientific and Technology Research Council of Turkey (TUBITAK), under project name: TUBITAK 1001, 214M070. The authors gratefully acknowledge the financial support provided by the TUBITAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Uguz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uguz, S., Ipek, O. Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques. J Intell Manuf 33, 1393–1417 (2022). https://doi.org/10.1007/s10845-020-01729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01729-0

Keywords

Navigation