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Abstract 

Task-Parameterized Learning from Demonstrations (TP-LfD) is an intelligent intuitive 

approach to support collaborative robots (cobots) for various industrial applications. Using TP-

LfD, human’s demonstrated paths can be learnt by a cobot for reproducing new paths for the 

cobot to move along in dynamic situations intelligently. One of the challenges to applying TP-

LfD in industrial scenarios is how to identify and optimize critical task parameters of TP-LfD, 

i.e., frames in demonstrations. To overcome the challenge and enhance the performance of TP-

LfD in complex manufacturing applications, in this paper, an improved TP-LfD approach is 

presented. In the approach, frames in demonstrations are autonomously chosen from a pool of 

generic visual features. To strengthen computational convergence, a statistical algorithm and a 

reinforcement learning algorithm are designed to eliminate redundant frames and irrelevant 

frames respectively. Meanwhile, a B-Spline cut-in algorithm is integrated in the improved TP-

LfD approach to enhance the path reproducing process in dynamic manufacturing situations. 

Case studies were conducted to validate the improved TP-LfD approach and to showcase the 

advantage of the approach. Owing to the robust and generic capabilities, the improved TP-LfD 

approach enables teaching a cobot to behavior in a more intuitive and intelligent means to 

support dynamic manufacturing applications. 
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1. Introduction 

Modern manufacturing is characterized by shifting from mass production to mass 

customization, increased product personalization and shorter product lifecycles [1]. To meet 

the new industrial needs, it is required to develop more versatile robotic technologies. Industrial 

robots, which primarily execute pre-programmed tasks for mass production, lack adaptability 

to changes in customized manufacturing and dynamic uncertainties caused by counterpart 

human operators in the manufacturing processes [2]. In contrast, collaborative robots (cobots) 



can effectively support human-robotic cooperation (HRC) for various dynamic manufacturing 

applications. Different from an industrial robot, a cobot is embedded with an intuitive 

mechanism that can enable the cobot to learn from its human companion intelligently. In the 

meantime, the mechanism can also support the cobot to adapt to its working environment to 

carry out a dynamic task flexibly [3]. Thus, cobots have been increasingly adopted in 

engineering and manufacturing companies, especially Small and Medium-sized Enterprises 

(SMEs) [4], to cater for fast-paced changes in their mass customization processes. 

 The following example illustrates the above concepts. In Figure 1 (a), a robot picks an 

object from one position on a manufacturing transmission belt and places it into a packaging 

box. The robot is pre-programmed to follow a fixed set of way points. In other words, the path 

is repeatable and does not cater for changes in robotic setting. However, in dynamic 

manufacturing settings, positions of objects for picking might vary, and dynamic adjustments 

on the pick-and-place path of the robot should be made adaptively. As shown in Figure 1 (b), 

the object for picking is on changing positions and orientations. Instead of having pre-

programmed way points, a cobot with the capability to learn and interpolate from human’s 

demonstrations, would be more flexible to the varying positions, thus implementing the pick-

and-place task in a more flexible means. 

 
Figure 1. (a) Pre-programmed robotic operations in a pre-determined manufacturing setting. (b) Robotic 

motions that cater for un-predictable changes in a dynamic manufacturing setting. 

Task-Parametrized Learning from Demonstrations (TP-LfD) is an effective intuitive 

approach for cobots to implementing intelligent flexible behaviors, such as apple picking [5], 

tennis playing [6] and industrial assembly [7]. For the above pick-and-place task, using TP-

LfD, some human’s demonstrations are taken to train a cobot to act under different task settings. 

Then, TP-LfD is used to generalize over the demonstrations and reproduce a path of the cobot 

to address a dynamic setting. More details of the process are depicted below [8]: 

• A human operator demonstrates a path that a cobot should follow for picking an object 

from a start point and drop the object into an end-point. This is executed by dragging the 

end effector of the robot or inputting path points using a user interface. The positions of 

the start and/or end points might be varied between the demonstrations (Figure 2 (b)); 

(a) (b) 



• Using TP-LfD, the demonstration paths of the cobot are encoded with respect to task 

parameters. Task parameters usually refer to multiple frames of reference (frames in the 

rest of the paper) associated with objects that represent their positions in the 

demonstrations. The frames and demonstration paths will be further utilized for 

reproducing a new path for a dynamic manufacturing situation. Figure 2 (a) is an example 

of a task scenario on which the demonstrations are recorded. The object for picking in the 

demonstration path is associated with a frame (e.g., Frame 1), which is defined by a 

location vector and a rotation matrix. As the object varies positions, the frame does as well 

(e.g., Frame 2). One of the requirements for TP-LfD is to detect the frames of objects. 

• Based on frames, a mathematical model, such as Task Parametrized Gaussian Mixture 

Model (TP-GMM), which is suitable to model complex systems [9], is introduced to 

encode the demonstrated paths. Then, based on TP-GMM and a regression mathematical 

model, such as Task Parameterized Gaussian Mixture Regression (TP-GMR), a new path 

can be reproduced. During the above encoding modeling and reproducing processes, the 

human operator is not required to possess programming skills and robotic knowledge in 

operating the cobot to accomplish dynamic tasks. 

In TP-LfD, frames are critical inputs to ensure the quality of the reproduced path. Thus, 

essential tasks in TP-LfD include: 1) how to detect and localize frames in an application scene; 

2) how to choose optimal frames to better support TP-LfD. 

 
Figure 2. (a) An example of a demonstration scenario showing two frames: Frame 1 on the object of a 

variable location and Frame 2 on the box in which the object should be placed in. The frames are defined 

by position and orientation with respect to a global reference frame. (b) A set of demonstration paths are 

recorded by an operator to teach a cobot to pick an object of a variable position and place it into a box. 

Traditionally, a human operator is responsible for determining the frames of an object in an 

application scene and a computer vision algorithm is designed to detect the frames 

automatically. However, this process requires human’s programming expertise to adapt TP-

LfD to changes in the application/objects, which hinders the intuitiveness and flexibility of the 

algorithm. Thus, the gap between TP-LfD and dynamically customized manufacturing 

deployments is still significant [4]. To address the challenge, in this paper, an improved TP-

(a) (b) 



LfD approach is presented. The innovative characteristics of the improved TP-LfD approach 

include: 

• Generic visual features of objects are identified intelligently to support frame extraction, 

thereby making the improved TP-LfD approach widely applicable without requiring 

further manual programming adjustment on the cobot; 

• Optimal frames are determined from the set of the generic visual features using a statistical 

algorithm and a reinforcement learning algorithm. The algorithms can eliminate redundant 

frames and irrelevant frames to improve the quality of the reproduced path; 

• Meanwhile, a B-Spline cut-in algorithm is designed and integrated with the reproduced 

process to further enhance the adaptability of the path for dynamic and customized 

manufacturing situations. 

In this paper, the performance of the improved TP-LfD approach was validated via some 

simulation and practical manufacturing case studies, showing the potential of the approach in 

supporting practical industrial applications. 

In the rest of the paper, the related works are presented in Section 2. The methodology of 

this research is detailed in Section 3. In Section 4, case studies with different complexities are 

depicted. The research is concluded, and future research is outlined briefly in Section 5. 

2. Related Works 

2.1 Task Parameter Detection 

One of the essential steps in TP-LfD is to detect its task parameters, which usually refer to 

the positions of objects relevant to task paths. Table 1 shows a list of methods developed 

previously for detecting task parameters to support TP-LfD for industrial applications. The 

table highlights the major characteristics and advantages of each method (also including the 

method to be presented in this paper). 

Table 1. Methods of detecting the positions of objects and their characteristics. 

Ref. Detection Method 
Non-invasive 

hardware 

Capable to detect 

complex objects 

Easily extended 

to other objects 

[10] Motion capturing - x x 

[11] [12] Sticker markers - x x 

[13] [7] Image processing, 

color/shape segmentation 

x - - 

[14] [15] Contour matching x - x 

[16] Cloud point matching x x - 

[17] [18] 

[19] 

SVM/ANN classification x x - 



[20] [21] Deep learning algorithm x x - 

Ours Improved TP-LfD x x x 

In those research works, the methods of motion capturing [10] and sticker markers [11] [12] 

are reliable to support complex scenarios. However, the works require placing hardware, i.e., a 

motion capturing bulb or sticker, on parts. This way is still not desirable or even possible in 

practical manufacturing applications. Some methods were designed based on image processing 

techniques, such as color segmentation, shape detection [7] [13] or contour matching [14] [15]. 

However, the methods need to be customized and adjusted depending on each individual case. 

The customization process will be a strain on programmers for re-coding, and it is not suitable 

for customized manufacturing applications. Moreover, it is difficult to use the methods to detect 

objects with complex shapes or multiple colors, which, however, could be a normal case in 

manufacturing scenarios. Some methods were implemented based on machine learning 

techniques, such as support vector machine (SVM)-based classifiers [18] [19] and deep learning 

networks [20] [21]. The methods can be reliably used to detect and classify objects for a 

practical scene. However, the methods rely on a large amount of training data to function 

accurately, which introduces expensive processes of data collection and algorithm training for 

a new task. Furthermore, the method presented in [16] used a scanner to generate cloud points 

of an object and trained the algorithm of detecting the positions of the object from the cloud 

data. However, a complex system consisting of expensive hardware setup as well as a rotating 

table and a 3D camera/scanner is required. In this paper, the aim is to develop a more generic, 

flexible and intelligent method to detect task parameters to meet the changing needs of 

customized manufacturing. Meanwhile, the design of the method is also aimed to be based on 

a minimal and versatile hardware setup (e.g., only a 2D camera) to suffice the need for detecting 

objects of random shape/form. Some examples are illustrated in Figure 3. 

 
Figure 3. Examples of object detection techniques: (a) using sticker markers [12], (b) using mask R-

CNN [20], (c) using contour matching [15]. 

The methods for object/frame detection can also be used for vision-based motion planning, 

which is another way of programming cobots for variables tasks. Unlike TP-LfD, motion 

planning requests a programmer to provide a rule-based program detailing the relation between 

the path of a robot and the position of an object. However, in tasks where some path deviations 

(a) 

  
(b) 

  
(c) 

  



exist, TP-LfD is more appealing owing to its intuitive programming capability. That is, the 

relation between robot’s path and object’s position is captured intelligently by the TP-LfD 

algorithm and no programming expertise is necessary. 

2.2 Task Parameter Optimization 

Task parameters are usually chosen and designed manually. This could lead to sub-

optimality, such that the user could chose a task-irrelevant frame or two frames that are 

redundant. Redundant frames are those frames that belong to the same rigid object, i.e., they 

have fixed relative positions with respect to each other. Due to the fixed relative positions 

between detected frames on a single object, training based on redundant frames is an 

unnecessarily computation-expensive process as the frames will generate the same TP-GMM. 

Moreover, irrelevant frames are those frames associated from environmental objects by a 

detection algorithm but irrelevant to the task. If redundant and/or irrelevant frames are 

considered in TP-LfD, the performance of the algorithm deteriorates and becomes falsely 

biased. Ideally, there should be one frame per task-relevant object.  

To tackle the above problem, Alizadeh et al. defined an importance score for each frame to 

identify redundant frames [22] and eliminate irrelevant frames [23]. The importance score is 

the ratio of the covariance matrix of a frame over the total covariance of the path. It is a measure 

of how much a frame affects the path at a given path point. Frames with an equal importance 

score are deemed redundant, and only one of them is accounted for during path reproduction. 

However, in a real-life situation with slight frame position disturbances, even redundant frames 

will not have exactly equal importance scores. Therefore, an error threshold should be 

introduced to account for slight frame mis-localizations. Moreover, Alizadeh and Karimi’s 

algorithm necessitates the training of TP-GMM to obtain the covariance matrices before 

grouping redundant frames [22]. However, in the cases with a large number of frames (e.g., 

more than ~50), TP-GMM would fail to converge. Therefore, it is important to note that it is 

paramount to design another algorithm to group redundant frames before training TP-GMM. 

Alizadeh and Malekzadeh also employed the same importance score to identify irrelevant 

frames [23]. Frames with an importance score less than a user-specified threshold are deemed 

irrelevant and excluded from TP-LfD. However, choosing an appropriate threshold is tricky in 

the cases when some frames have subtle yet important effects on the path. Moreover, this 

method does not eliminate redundant frames in case some frames are missed by the algorithm 

presented in [23]. Therefore, a solution with a feedback system should be devised to identify 

optimal relevant frames for TP-LfD. 

Other research works were conducted to improve the performance of TP-LfD using frame-

based solutions. For example, Sena et al. used the same importance score to adjust the weights 

of TP-GMM for different frames during reproduction [24]. This approach provides more 



accurate results at the start and end of the paths even when frames’ positions are changed 

drastically compared to the demonstrations. To further improve the performance of this process, 

Huang et al. used a reinforcement learning algorithm to shift the position of frames until a task-

specific cost function is minimized [25]. Moreover, the authors developed an automatic frame 

selection algorithm where which frames contribute most are identified to minimize the cost 

function. The approach eliminates the frames that have a low influence on the learning to speed 

up computation and improves performance. However, the limitation of the approach is that it 

does not tackle how to visually detect frames, but rather the frames are specified as fixed 

positions with respect to the cobot’s end-effector. Thus, it is not functional in that the frames 

are intrinsically defined on non-static objects. Girgin et al. created an active learning approach 

to suggest new demonstrations that ensure improvement in the control policy [26]. This could 

include suggesting new positions for task parameters. However, this still does not tackle the 

problem of choosing where task parameters are on objects of interests or what the objects of 

interest are.  

To overcome the above challenges, the research presented in this paper is aimed to develop 

a systematic approach with the following characteristics to facilitate dynamic manufacturing 

applications: 

• The approach will be based on a simpler setup based on a 2D camera, which can be 

intuitively used by operators for a variety of industrial tasks/objects without making major 

algorithmic changes on individual cases. The approach should detect frames automatically 

to be used to train a cobot to perform tasks intelligently; 

• An intelligent algorithm that identifies the optimal frames to boost the TP-LfD’s 

performance should be developed. This will be conducted by grouping redundant frames 

and removing irrelevant frames using intelligent algorithms. 

3. Methodology of the improved TP-LfD approach 

3.1. Overall Methodology 

The improved TP-LfD approach presented in this paper is comprised of two procedures: TP-

GMM for encoding demonstrations (a training process), and TP-GMR for path reproduction (a 

reproduction process). The overview of the improved TP-LfD approach is shown in Figure 4. 

In TP-GMM for encoding demonstrations, there are several critical steps: 1) recording 

demonstrations; 2) extracting visual features, i.e., frames; 3) grouping redundant frames; 4) 

calculating TP-GMM for each frame; 5) removing irrelevant frames. The improvements of the 

approach developed in this paper over conventional TP-GMM are in the above steps 2), 3) and 

5) by developing new algorithms. 



In the path reproduction process based on TP-GMR, the main steps are: 1) recording the 

new image of the new scene; 2) detecting relevant frames in the new image; 3) matching visual 

features between the new image and the images of the demonstrations to obtain relevant frames; 

4) reproducing a path using TP-GMR; 5) fine-tuning the path to fit into a new dynamic 

environment using a B-Spline cut-in algorithm. The improvements of the approach developed 

in this paper over conventional TP-GMR are in the above steps 3) and 5) by developing new 

algorithms. 

The above procedures are detailed in the following sub-sections. 

 
Figure 4. The overview process of the improved TP-LfD approach. 

3.2. Recording Demonstrations 

Each demonstration entails the image of an application scene and a path that the cobot needs 

to follow to perform the task. In this paper, the images of the demonstrations are recorded in 2-

dimension to simplify the computation complexity of the approach, i.e., the top view of objects 

located on a surface. The path recorded consists of five elements: the time step t, the x-y-z 

coordinates and the gripper state g. To record the path, a user saves a series of way points and 

the path is interpolated in between them. This is similar to kinaesthetic teaching. In this 

improved TP-LfD approach, to improve the computational performance, the number of 

demonstrations recorded is set to a default value of 5. 

3.3. Extracting Visual Features 

In an effort to simplify the process of frame detection for TP-LfD, generic visual features 

are used to identify the frames of reference (task parameters). It presents a generic solution that 

can work for a wide range of objects without tweaking. Moreover, only a minimal setup of a 

2D camera is required. Two types of visual features are detected: Speeded Up Robust Features 

(SURF) and hand features. 

Record demonstrations 

Detect generic visual features 

common in all images  

Group redundant frames together 

Train TP-GMM 

Eliminate irrelevant frames 

Capture the image for a new setting 

Detect visual features in the new image 

Match visual features between the new 

image and the image of the 

demonstration to obtain relevant frames 

Reproduce the task in the new image 

using TP-GMR 

Use B-Spline cut-in algorithm to adapt to 

dynamic changes 

TP-GMM TP-GMR 



SURF features: Interest points are detected such as corners, T-junctions and blobs. Such 

interest points are widely available in objects, which makes the improved TP-LfD approach 

applicable with a wide range of object shapes and textures.  

Descriptor vectors are calculated to describe each interest point. The vectors are scale and 

rotation invariant, which allows them to be matched robustly from different images [27]. SURF 

features can be matched across the images of different demonstrations even when objects vary 

orientation on the table.  

Moreover, SURF features provide a balance between detection time and number of features 

retrieved [28]. Therefore, enough features can be retrieved from task-relevant objects that serve 

as task parameters for TP-GMM. Also, when attempting to reproduce a path in a new scene, 

the features can be matched quickly between the new image and the demonstration images to 

provide close to real-time results.  

Matching SURF features is done using the exhaustive nearest neighbor search algorithm 

[29]. Features that are matched across all the images of the demonstrations remain. If a feature 

is not found in at least one of the images, it is eliminated since TP-GMM can only be trained if 

a feature is found in all demonstration images.  

Once a SURF feature is matched in the images of all demonstrations, it is saved as a task 

parameter to be used in training TP-GMM. Each task parameter i is characterized by a position 

vector bi,m={x, y}i,m and an orientation αi,m, where m ∈ ℕ{1,…,M}, the total number of the 

demonstration images. From the orientation, a 2x2 rotation matrix Ai,m is calculated. An 

example of detected visual features and identified frames based on the matched visual features 

is shown in Figure 5. 

 

Figure 5. Examples of detected visual SURF features (left) and the common frames between all 

demonstration images (right). 

Hand features: hand features are detected using a pre-trained YOLOv3 neural network [30]. 

A hand detection is a square bounding box on the 2D image. If multiple hands are detected in 

a demonstration image, there is no differentiating factor between them except a detection 

confidence score. Matching hand features across demonstration images is not possible. 



Therefore, the hand of the highest confidence score from each demonstration image is 

considered and the rest of the hand features are ignored.  

Moreover, the hand bounding box is not oriented. Therefore, the orientation of the hand is 

considered being equal in all the images and is set to zero degrees. This is an acceptable 

assumption since it is likely that the human operator stands in a consistent direction with respect 

to the cobot. 

3.4. Grouping Redundant Frames 

 Redundant frames are those frames that belong to the same rigid object. Due to their fixed 

relative position with respect to each other, the obtained TP-GMM for each frame are identical. 

When reproducing a path using TP-GMM of all redundant frames, the path will be falsely 

biased towards the largest group of redundant frames. Therefore, redundant frames must be 

identified and grouped together as one object and only one frame should be used in the TP-

GMM and TP-GMR algorithms. This one frame is randomly chosen from the object, and it is 

called the lead frame. 

In this research, a statistic algorithm is devised to identify and group redundant frames based 

on their relative positions with respect to each other. The algorithm has the following steps: 

1. The distance Δbjk,m and the relative orientation Δαjk,m between two frames j and k in the 

m-th demonstration are calculated.  

𝛥𝑏𝑗𝑘 = {𝛥𝑏 ∀ 1 ≤ 𝑚 ≤ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛥𝑏𝑗𝑘,𝑚 =  √(𝑥𝑗,𝑚 − 𝑥𝑘,𝑚)2 + (𝑦𝑗,𝑚 − 𝑦𝑘,𝑚)2  (1) 

𝛥𝛼𝑗𝑘 = {𝛥𝛼𝑗𝑘,𝑚 ∀ 1 ≤ 𝑚 ≤ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛥𝛼𝑗𝑘,𝑚 =  (𝛼𝑗,𝑚 − 𝛼𝑘,𝑚)  (2) 

2. The standard deviation σ(Δbjk) and the mean μ(Δbjk) of the distance Δb between the 

frames j and k across all the demonstrations are calculated. 

𝜇(𝛥𝑏𝑗𝑘) =
1

𝑀
∑ 𝛥𝑏𝑗𝑘,𝑚

𝑀
𝑚=1      (3) 

𝜎(𝛥𝑏𝑗𝑘) =
√∑ (𝛥𝑏𝑗𝑘,𝑚 − 𝜇(𝛥𝑏𝑗𝑘))

2
𝑀
𝑚=1

𝑀
⁄     (4) 

3. The standard deviation σ(Δαjk) and the mean μ(Δαjk) of the relative orientation Δα 

between the frames j and k across all the demonstrations are calculated. 

𝜇(𝛼𝑗𝑘) =
1

𝑀
∑ 𝛥𝛼𝑗𝑘,𝑚

𝑀
𝑚=1      (5) 

𝜎(𝛥𝛼𝑗𝑘) =
√∑ (𝛥𝛼𝑗𝑘,𝑚 − 𝜇(𝛥𝛼𝑗𝑘))

2
𝑀
𝑚=1

𝑀
⁄     (6) 

4. If the standard deviation divided by the mean, σ(Δbjk)/μ(Δbjk) and σ(Δαjk)/μ(Δαjk) are both 

below a certain threshold ε, the frames are deemed redundant.  

𝑖𝑓
𝜎(𝛥𝑏𝑗𝑘)

𝜇(𝛥𝑏𝑗𝑘)
< 𝜀 ∩  

𝜎(𝛥𝛼𝑗𝑘)

𝜇(𝛥𝛼𝑗𝑘)
< 𝜀    (7) 



5. A PxP redundancy matrix obj is defined to represent the redundancy relationship 

between the frames, where P is the total number of the frames. If the frames j and k are 

redundant, objjk is set to 1. Then, 

𝑜𝑏𝑗𝑗𝑘 = 𝑜𝑏𝑗𝑘𝑗 = 1     (8) 

6. When the matrix is completed, frames that are redundant are grouped together into an 

object. From each object, the frame with the highest detection confidence value is set to 

be the lead frame. The lead frame will be used in training the TP-GMM. 

7. If the total number of the obtained lead frames is more than the maximum number of the 

lead frames, maxlead, the threshold is increased by an increment and Steps 4 to 7 are 

repeated. 

8. If the total number of the obtained lead frames is less than the maxlead, the process is 

completed. 

The maximum number of lead frames allowed is set to be 25. The threshold ε is initialized 

as 0.05 and increased by increments of 0.01. Figure 6 illustrates the calculation process of the 

relative distances and angles between a pair of frames. The entire process of the algorithm is 

given below in Algorithm 1. 

 

Figure 6. The relative distances and angles between a pair of frames. 

Algorithm 1: The statistical algorithm for grouping redundant frames. 

Inputs: frames detected from the demonstration images 

Initialization:  

     Threshold 𝜀 = 0.05  

     The maximum number of lead frames maxlead = 25 

Loop over each pair of frames j and k:  

     Step 1: Calculate the mean μ and the standard deviation σ of the relative distances 𝛥𝑏𝑗𝑘 

and angles 𝛥𝛼𝑗𝑘; 

     Step 2: IF  
𝜎(𝛥𝑏𝑗𝑘)

𝜇(𝛥𝑏𝑗𝑘)
< 𝜀 ∩  

𝜎(𝛥𝛼𝑗𝑘)

𝜇(𝛥𝛼𝑗𝑘)
< 𝜀, THEN 

               𝑜𝑏𝑗𝑗𝑘 = 𝑜𝑏𝑗𝑘𝑗 = 1 (the frames j and k belong to the same object, i.e., redundant) 

               jump to Step 6 

           ELSE  

               Set 𝑜𝑏𝑗𝑗𝑘 = 𝑜𝑏𝑗𝑘𝑗 = 0 (the frames j and k do not belong to the same object) 

           END IF 



     END FOR 

Step 3: Merge groups of the redundant frames to obtain clusters called objects; from each 

object, choose one lead frame; 

Step 4: IF the number of lead frames < maxlead THEN 

          This algorithm completes  

      ELSE  

          𝜀 = 𝜀 + 0.01, and go to Step 2. 

      END IF 

Outputs: frames are grouped into objects, with a lead frame from each object 

3.5. Training TP-GMM  

Before the process of TP-GMM is introduced, some concepts of Gaussians from 

demonstrations are given. In Figure 7, the frames 2 from all the three demonstrations shown in 

Figure 5 are aligned as if the paths are observed from the frames 2. The paths are modeled as a 

group of Gaussians, A, B and C represented by ellipses in Figure 7. A Gaussian (denoted as the 

i-th Gaussian here) consists of the mean 𝝁𝒊 and covariance ∆𝒊. 𝝁𝒊 is a 1xD vector and ∆𝒊 is a 

DxD covariance matrix (D is the dimension of the coordinate system, e.g., 2 or 3). TP-GMM 

approximates the data distribution of demonstrations based on a series of Gaussians. 

 

Figure 7. An example of Gaussians produced by TP-GMM to encode the demonstration paths. 

The probability density function of a Gaussian is calculated according to the following 

formula: 

𝑁𝑖(𝒙𝑗|𝝁𝒊, ∆𝒊) =
1

(2𝜋)𝐷/2|∆𝒊|1/2 𝑒𝑥𝑝 (−
1

2
(𝒙𝑗 − 𝝁𝒊)

𝑇
∆𝑖

−1(𝒙𝑗 − 𝝁𝒊))  (9) 

where 𝑁𝑖 is the probability density function of the i-th Gaussian; 𝒙𝑗 represents a point from 

demonstrations (the number of points in demonstration is j=1,.., M); D is the dimension of the 

point in the coordinate system; 𝝁𝒊 is the mean of the i-th Gaussian; ∆𝒊 is the covariance of the 

i-th Gaussian. 

TP-GMM is summed up by the Gaussians with weights as follows: 

𝑝(𝒙𝑗) = ∑ (𝜔𝑖 ∙ 𝑁𝑖(𝒙𝑗|𝝁𝒊, ∆𝒊))𝐾
𝑖=1 , s.t. ∑ 𝜔𝑖 = 1𝐾

𝑖=1  (0<𝜔𝑖<1)  (10) 
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where 𝑝(𝒙𝑗) is the probability density function of TP-GMM; K is the total number of 

Gaussians, 𝑤𝑖 is the weight of the i-th Gaussian contributing to the construction of TP-GMM. 

Moreover, a differentiation was made between the two types of frames, oriented and 

orientation-less, as defined by the authors [33]. An adjusted ring Gaussian model is used to 

model demonstration paths with respect to orientation-less frames [33]. 

3.6. Identifying Irrelevant Frames 

Irrelevant frames are those frames that are not related to the demonstration path’s function. 

For example, when detecting SURF features in an image, some of the features might be 

extracted from the background, from noise or from useless clutters. The performance of TP-

GMR is highly dependent on the set of frames given. If any of the frames are task-irrelevant, 

the performance of TP-GMR will deteriorate, and the reproduced path might be unsatisfactory. 

Therefore, in this paper, a reinforcement learning algorithm is designed to enhance the 

reproduced path by optimizing the choice of frames used. That is, given the expected number 

of relevant frames, nbRelev is set to be 2, and the algorithm identifies a set of nbRelev frames 

that produce the best path reproduction. The reinforcement learning problem is formulated as 

follows: 

State: The state of the environment is the reproduced path generated in each iteration of the 

algorithm; 

Action: The action set is the various frame combinations that can be chosen to reproduce 

the path; 

Model: The environmental model is the GMMs obtained from training the TP-GMM since 

they provide a mapping between the chosen frames and he reproduced path; 

Reward: The reward r is a function that assesses how close the reproduced path is to the 

demonstration path (ground truth); 

Policy: The policy π is a function that describes the probability of a frame being used in the 

next path reproduction, based on the previous performance of each frame. 

The reinforcement learning algorithm is performed in the following steps: 

1. Each lead frame i is given a relevancy probability, probRelevi, that signifies how likely 

it is that a frame is relevant to the task, i.e., the probability that it should be used to 

reproduce the path. Initially, the probRelev’s are assigned equal values summing up to 

1. Therefore, given P is the total number of lead frames, 

𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖 = 1
𝑃⁄      (11) 

2. The algorithm is trained over iterTot number of iterations. The value of iterTot is set to 

a default value of 10PxnbRelev. In each iteration iter, a disturbance ΔprobReleviter to the 

relevancy probability is introduced as part of the exploration tactic in the reinforcement 

learning algorithm. This results in temporary relevancy probabilities λprobRelev that are 



used as the policy π in iteration iter. The λprobRelev for all lead frames sum up to 1. 

Given rand, a random number between 0 and 1,  

𝛥𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖𝑡𝑒𝑟 = (𝑟𝑎𝑛𝑑𝑖 − 𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣) × 0.05   (12) 

𝜆𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖𝑡𝑒𝑟 = (𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣 + 𝛥𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖𝑡𝑒𝑟) ∑ 𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣 + 𝛥𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖𝑡𝑒𝑟⁄  (13) 

3. In each iteration iter, a random demonstration m is chosen. The nbRelev lead frames to 

be used in path reproduction, i.e., action to be performed, is based on the values of 

λprobRelev, i.e. the policy. The nbRelev frames of maximum λprobRelev are used to 

reproduce the path in the m-th demonstration. Given the lead frames with maximum 

probRelev, the state (i.e., the path) is reproduced using the model, i.e., the GMMs of 

these frames. For example, if the number of relevant frames is 2, then the 2 lead frames 

with the highest value of λprobRelev at a certain iteration iter are used in TP-GMR.  

4. Once a path is generated, a cost is calculated as the average of the Euclidean distance 

between the points of the reproduced path and the demonstration path for the m-th 

demonstration. Given that T is the total number of points in a path, (xt, yt) and (Xt,m, Yt,m) 

are the x-y coordinates of the path point at time step t on the reproduced path and the path 

of the m-th demonstration, respectively, 

𝑐𝑜𝑠𝑡𝑖𝑡𝑒𝑟 =
1

𝑇
 ∑ √(𝑥𝑡 −  𝑋𝑡,𝑚)2 + (𝑦𝑡 − 𝑌𝑡,𝑚)2𝑇

𝑡=1    (14) 

5. For every iterPeriod number of iterations, the costs are normalized between 0 and 1. The 

value of iterPeriod is set to a default of P. Then, the reward r is calculated using the 

normalized costs, such that, 

𝑟 𝑖𝑡𝑒𝑟 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−5 × 𝑐𝑜𝑠𝑡𝑖𝑡𝑒𝑟)     (15) 

6. For every iterPeriod number of iterations, the value of probRelev is updated based on 

the rewards obtained from the different disturbances ΔprobRelev. The value of probRelev 

slowly converges to the lead frames obtaining to the highest reward value, i.e., the 

relevant lead frames. 

𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣 = 𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣 + ∑ 𝑟𝑖𝑡𝑒𝑟 × 𝛥𝑝𝑟𝑜𝑏𝑅𝑒𝑙𝑒𝑣𝑖𝑡𝑒𝑟𝑖𝑡𝑒𝑟    (16) 

 

 

 

 

 

 

 

 



Algorithm 2. A reinforcement learning algorithm for removing irrelevant frames. 

Input: demonstration data (paths and images) + trained model of GMMs for each lead frame 

Parameter Initialization: 

nbRelev = 2 (default, but adjustable according to task) 

iterPeriod = P 

iterTot = Period x 10 x poolsize 

probRelev = 1xP vector of {1/P} 

Loop over iterTot number of iterations: 

Step 1: Reproduce:  

Set ΔprobRelev to a random 1xP vector of values between 0 and 1-probRelev 

Let 𝜆probReleviter be probRelev + ΔprobRelev 

Sort 𝜆probReleviter 

m is a randomly chosen demonstration 

filter_frames is the first nbRelev frame from Demonstration m of maximum 

𝜆probReleviter 

Reproduce a path using TP-GMMs of filter_frames only 

costiter is the distance between the reproduced path and the demonstration path 

of m 

Step 2: Update: 

IF iter is a multiple of iterPeriod THEN 

Normalize costs from all previous iterations between 0 and 1 

FOR each iter in the past iterPeriod iterations 

riter = sigmoid(-5 x costiter) 

probRelev = probRelev + riter x 𝜆probReleviter /iterPeriod 

          END FOR 

END IF 

END FOR 

Output: Relevant frames = the first nbRelev frames of maximum probRelev 

3.7. Calculating TP-GMR for a Reproduced Path 

Given a new setup with objects placed in previously unobserved positions, the aim is to 

reproduce the cobot’s path based on what has been previously learnt from the demonstrations. 

Firstly, an image is recorded of the new scene and SURF features are extracted from the image. 

The features are matched with the relevant features from demonstration images. The aim to 

localize the relevant features in the new image in their new positions. These relevant features 

are then used in TP-GMR to reproduce the new path. The ring Gaussians of orientation-less 

frames are transformed into normal Gaussians prior to performing TP-GMR [33]. In the 

calculation process of TP-GMR, (𝑥𝑗 , 𝑦𝑗)is denoted as 𝑥𝑗. The basic steps of TP-GMR are as 

follows (using the calculation process on 𝑥𝑗 as an example): 

Step 1: Joint probability 𝑝(𝑡, 𝑥𝑗) – the calculation is as follows: 

𝑝(𝑡, 𝑥𝑗) = ∑ (𝜔𝑖 ∙𝐾
𝑖=1 𝑁𝑖(((𝑥𝑗, 𝑡)|𝒎𝒊𝒕, 𝒄𝒐𝒗𝒊) ∙ 𝑁𝑖(𝑡|𝝁𝒊𝒕, ∆𝒊𝒕)), s.t. ∑ 𝜔𝑖 = 1𝐾

𝑖=1  (0<𝜔𝑖<1) (17) 

where 𝝁𝒊 and ∆𝒊 are represented in Equation (18); 𝝁𝒊𝒕 represents the means of all the x for 

the i-th Gaussian; ∆𝒊𝒕𝒙  represents covariance of t and all the x for the i-th Gaussian, and so on 

for each parameter. 



𝝁𝒊 = [
𝝁𝒊𝒕

𝝁𝒊𝒙
]     ∆𝒊= [

∆𝒊𝒕𝒕 ∆𝒊𝒕𝒙

∆𝒊𝒙𝒕 ∆𝒊𝒙𝒙
]                                (18) 

In Equation (17), 𝑁𝑖((𝑥𝑗, 𝑡)|𝑚𝑖𝑡 , 𝑐𝑜𝑣𝑖) is the conditional probability density function for 𝑥𝑗 

relative to t; the mean 𝑚𝑖(𝑡) and covariance 𝑐𝑜𝑣𝑖 are shown in Equations (19) and (20): 

𝒎𝒊𝒕 = 𝝁𝒊𝒙 + ∆𝑖𝑥𝑡 ∙ ∆𝑖𝑡𝑡
−1 ∙ (𝑡 − 𝝁𝒊𝒕)                                (19) 

𝒄𝒐𝒗𝒊 = ∆𝒊𝒙𝒙 − ∆𝒊𝒙𝒕 ∙ ∆𝒊𝒕𝒕
−𝟏 ∙ ∆𝒊𝒕𝒙                                  (20) 

Step 2: Marginal probability 𝑝(𝑡): 

The marginal probability is shown in Equation (21): 

𝑝(𝑡) = ∫ 𝑝(𝑡, 𝑥𝑗)𝑑𝑥 = ∑ 𝜔𝑖
𝐾
𝑖=𝑖 ∙ 𝑁𝑖(𝑡|𝝁𝒊𝒕, ∆𝒊𝒕)                          (21) 

Step 3: The output data 𝑥𝑗
′: 

To sum up, the function of regression can be inferred from the joint probability and 

marginal probability. The conditional probability 𝑝(𝑥𝑗|𝑡) is shown in Equation (22): 

𝑝(𝑥𝑗|𝑡) =
𝑝(𝑡, 𝑥𝑗)

𝑝(𝑡)
=

∑ (𝜔𝑖 ∙𝐾
𝑖=1 𝑁𝑖((𝑥𝑗, 𝑡)|𝒎𝒊𝒕, 𝒄𝒐𝒗𝒊) ∙ 𝑁𝑖(𝑥𝑗|𝝁𝒊𝒕, ∆𝒊𝒕))

∑ 𝜔𝑖
𝐾
𝑖=𝑖 ∙ 𝑁𝑖(𝑡|𝝁𝒊𝒕, ∆𝒊𝒕)

 

   = ∑ 𝛼𝑖(𝑡) ∙𝐾
𝑖=1 𝑁𝑖((𝑥𝑗, 𝑡)|𝒎𝒊𝒕, 𝒄𝒐𝒗𝒊)                          (22) 

𝛼𝑖(𝑡) in Equation (22) is the mixture weights of TP-GMR: 

𝛼𝑖(𝑡) =
𝜔𝑖∙𝑁𝑖(𝑡|𝝁𝒊𝒕,∆𝒊𝒕)

∑ 𝜔𝑖∙𝐾
𝑖=1 𝑁𝑖(𝑡|𝝁𝒊𝒕,∆𝒊𝒕)

                                      (23) 

The final regression data 𝑥𝑗
′ from TP-GMR is represented in Equation (24): 

𝑥𝑗
′ = ∑ 𝛼𝑖(𝑡) ∙𝐾

𝑖=1 𝑚𝑖(𝑡)                                      (24) 

3.8. Reproduced Path Adjustment for Dynamic Positions 

To better address dynamic situations, in this research, a B-spline [31] based cut-in algorithm 

is integrated to be adaptive to changes on the generated regression path. The algorithm can 

smoothen the reproduced path while keeping the characteristics of the path for a dynamic 

setting. The process can be explained using the example shown in Figure 8. In Figure 8 (a), the 

curve R is the original regression path generated using TP-GMR, in which 𝑂𝑠 is the start point, 

𝑂𝑒 is the end-point, and 𝑂1 − 𝑂5 are the intermediate points. Point a is a new start point in a 

dynamic situation, and 𝑂𝑒 is still the end-point in the situation. Figure 8 (b) shows the adjusted 

reproducing path represented in the curve NR using the B-spline cut-in algorithm. 

 
Figure 8. The B-spline based cut-in algorithm for path reproducing in a dynamic situation: (a) calculation 

of the cut-in point. (b) the improved reproduced path. 

(a) (b) 

   



The procedures of the algorithm are below: 

1. If Point a is simply inserted into Curve R, there could exist a redundant turning problem 

in the regression path. To avoid this problem, an improved procedure is designed here. 

As shown in the Figure 8 (a), based on Points a, 𝑂𝑠 and 𝑂𝑒, an x-y-z coordinate system is 

built. The points on the demonstration path are projected on the x-y plane (𝑝1 − 𝑝5). The 

distances between Points a and the projected points (𝑝1 − 𝑝5) are calculated. The point 

in the shortest distance between its projected point on the x-y plane and Point a is chosen 

as the cut-in point, and the points before the cut-in point on the regression path are 

removed. 

2. A new regression path, starting from Point a, should be integrated into the trimmed 

regression path starting from the cut-in point. To make the integrated path smooth, a B-

spline curve is introduced. Point a, the cut-in point and the next point to the cut-in point 

on regression path are knot points for generating the B-spline curve. The formula is 

represented below.  

𝑃(𝑢) = ∑ 𝑃𝑖
𝑛
𝑖=0 ∙ 𝐵𝑖,𝑘(𝑢)                                     (25) 

where 𝑃𝑖 is the set of control points (i.e., 𝑃𝑖 = (𝑎, 𝑂2, 𝑂3) in this research); 𝐵𝑖,𝑘(𝑢) means 

the base functions of k-times B-spline; in the research, k = 3 (called a cubic B-spline).  

4. Results 

4.1. Simulation Results 

The improved TP-LfD approach presented in this paper was used to program the cobot for 

four tasks as case studies for research validation based on the CoppeliaSim EDU software. The 

case studies are shown in Figure 9. The functions of the tasks are as follows: 

• Task 1 – Apply Glue on Book Spine: This is a one-object operation in which the cobot 

needs to trace a line of glue on the spine of a book cover. The book varies position and 

orientation. This could be done in a human-robot interaction task where the human picks 

the hardcover afterwards and places it accurately on the book. 

• Task 2 - Pick-and-place: This is a two-object operation in which the cobot picks up a 

cube and places it in a box. Both objects in this task change in positions and orientations. 

This task represents of a manufacturing task, i.e., such as assembly.  

• Task 3 – Sort Circuit Boards: Given two circuit boards, the cobot picks the smaller one 

and places it in the green of the boxes. This is analogous to conditional manufacturing 

tasks such as sorting. 

• Task 4 – Handover: In this task, the robot picks up an object and hands it to the human 

hand. The object and the hand vary positions. The hand is detected using YOLO 

(Redmon and Farhadi, 2018) which is integrated in improved TP-LfD approach. 



 
Figure 9. Four scenarios to validate the improved TP-LfD approach. 

The improved TP-LfD approach was trained using five demonstrations. The approach 

identified the relevant frames that belong to the task-relevant object(s). The path is generated 

using TP-GMR based on TP-GMM of the relevant frames. Figure 10 shows the results in the 

validation for each task:  

• The first row shows the results of grouping redundant frames together. In each scenario, 

feature of the same color belong to the same object, i.e. are redundant.  

• The second row shows the demonstration path recorded by the user (green), the lead 

frames that are used in training TP-GMM, and the reproduced path (white) using these 

lead frames. 

• The third row shows the results of the reinforcement learning algorithm eliminating the 

irrelevant frames. The identified relevant frames are shown as well as the reproduced 

path (white) using them. It can be observed that the path reproduced using relevant 

frames is significantly closer to the demonstration path than the path reproduced using 

all lead frames.  

Table 2 presents a quantitative comparison between the paths. The comparison metrics are: 

dall, the average of the Euclidean distance between the all points on the reproduced path and the 

demonstration path; dstart, the Euclidean distance between the start point of the reproduced and 

the demonstration paths; dend, the Euclidean distance between the end point of the reproduced 

and the demonstration paths. The results show that overall, the path reproduced using relevant 

frames is closer to the demonstration path, and provides the higher accuracy for the path’s target 

start and end positions in most cases. 
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Table 2. Comparison between reproduced paths using all frames vs. relevant frames only. 

 Path Metric Task 1 Task 2 Task 3 Task 4 

Reproduced path 

using all frames 

dall 0.0858 0.064 0.04 0.0126 

dstart 0.1434 0.0071 0.022 0.00126 

dend 0.0842 0.2443 0.038 0.1139 

Reproduced path 

using relevant 

frames only (ours) 

dall 0.0032 0.0126 0.0102 0.0107 

dstart 0.0037 0.0043 0.0042 0.0033 

dend 0.0035 0.0409 0.0123 0.022 

 
Figure 10. Training results on the validation image. 

Moreover, the trained models are tested in new scenarios. The reproduced path is generated 

in 3D with gripper action. A recording of the cobot’s reproduced path can be watched in this 

video: https://youtu.be/Y3m2M64OazI . 

4.2. Experimental Results 

In this sub-section, the improved TP-LfD approach was tested on a battery assembly 

process. The main aim of this sub-section is to highlight the adaptability of the approach to 

different tasks using different parts and textures. The following tasks are learnt by the approach: 

Task 1 

 

Task 2 

  

Task 3 

  

Redundant frames 

  

Demonstration path 

  

Demonstration path 

  

Reproduced path 

  

Reproduced path 

  

Relevant frames  

  

Task 4 

  



1. Task 1 - Place Battery Holder on Plate: The robot needs to pick up a car battery holder 

and place it on a cooling plate. The battery holder varies position on a table, while the 

plate is stationary. The placing position on the plate is fixed but with loose tolerance. 

2. Task 2 - Place Battery in Holder: This is a peg-in-hole application. The robot picks up 

a battery in upright position and place it in a slot in a car-battery holder. The tolerance 

of the placing position here is tighter than in Task 1. 

3. Task 3 - Trace Battery Contact Point: After filling the battery holder with batteries and 

placing the holder’s lid, this part of the task is to jet an insulating paste around the 

contact point. 

In Figures 11, 12 and 13, the demonstration images show identified frames (colored 

numbered dots) obtained after the first step of filtering through redundant frames. After training 

TP-GMM and identifying the relevant frames (denoted as the white dots) using the 

reinforcement algorithm, TP-GMR is used to reproduce the path (denoted in white). Upon being 

given an image of a new setup, the relevant frames are localized (donated as yellow dots) and 

the path is reproduced using TP-GMR.  

 

Figure 11. Results of applying the improved TP-LfD approach on Task 1 – Placing the battery holder 

on the cooling plate. 

 

Figure 12. Results of applying the improved TP-LfD approach on Task 2 – Placing the battery inside 

the battery holder. 



 

Figure 13. Results of the applying the improved TP-LfD on Task 3 – Jetting insulating pasting on contact 

point of battery with the holder’s lid.  

Results show the improved TP-LfD approach successfully learnt demonstrations involving 

a range of object material from plastic to metallic surfaces, and a range of object sizes from 

small batteries to large plates. Some of the observations include: 

• Detected relevant frames might be mis-localized in objects having symmetrical features, 

such as the battery holder in Task 1. For example, in the demonstration image, the 

relevant feature is on the left half of the battery holder. However, in the new setup 

images, the relevant feature is detected to be to the right of the battery holder. The error 

originates from the SURF feature matching algorithm, which could be prone to error 

when handling symmetrical objects. For this particular task, this error does not present a 

major issue since the tolerance in moving the object is high. However, in future works, 

other 2D features will be investigated for detection/matching to overcome such an error. 

In Tasks 2 and 3, the error does not occur since the objects in the image are not 

symmetrical.  

• In Tasks 2 and 3, the improved TP-LfD approach performed well, showing that the path 

successfully reaches the hole in the battery holder or successfully traces the battery’s 

contact point, respectively. However, a task such as lining batteries in a battery holder is 

an arrayed task. The improved TP-LfD approach does not yet provide an intelligent 

solution for arrayed tasks, so each operation in the array of pick-and-place would have 

to be coded individually. However, since arrayed tasks often occur in repetitively 

patterned objects, the visual features are repeated along the object. Therefore, this can be 

exploited to enable the cobot to learn the arrayed action from a few sparse 

demonstrations. In future works, we aim to extend the improved TP-LfD approach to 

intelligently support more complex tasks, such as arrayed tasks as well as conditional 

tasks.  

4.3. Implementation 



In this sub-section, a full physical implementation on a pick-and-place task was 

demonstrated. The hardware set-up is shown in Figure 14. The experimental set-up includes a 

UR5 cobot, a 2-finger adaptive gripper, a switch, a 3-D camera and a computer. In the 

experiment, the images in the demonstrations are recorded in 2-D using the camera to simplify 

the computation process. 

 
Figure 14. The experimental platform. 

The aim of the pick-and-place task is to pick a bolt (target-A) and place it in a rectangular 

storage box (des-B). The position and direction of target-A can be varied while des-B is chosen 

to be fixed. Figure 15 shows the table-top images for a demonstration, the frames detected in 

the demonstration and the demonstration path. There are four demonstrations built up. 

 
Figure 15: A demonstration, the identified features and the demonstration path.  

According to the improved TP-LfD approach, the paths are used to train TP-GMM. 

Moreover, two optimal task parameters, i.e., frames, are autonomously detected, one belonging 

to target-A and one to des-B (as shown in Figure 15). Given a new image of the setting, shown 

in Figure 16, the optimal frames are localised and the path is generated using TP-GMR. 
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Figure 16: The test image and reproduction path. 

5. Conclusions 

In this paper, an improved TP-LfD approach is presented to support cobots to adapt their 

trajectory paths intelligently and adaptively for a variety of dynamic manufacturing 

applications. To enhance computational efficiency and performance robustness of the improved 

TP-LfD approach, frames identified in demonstrations needs to be optimized.  

The optimization process includes: 1) a statistical algorithm is developed to group redundant 

frames, and 2) a reinforcement learning algorithm is devised to eliminate irrelevant frames. 

Meanwhile, a B-Spline cut-in algorithm is designed to enable reproduced paths to better address 

dynamic situations. Case studies with different complexities showed that the overall 

performance of the improved TP-LfD approach is significantly enhanced in terms of 

adaptability and robustness. 

In future works, improvements of further eliminating irrelevant frames will be explored. 

That includes experimenting with more visual feature detection techniques besides SURF. It is 

targeted to extend the improved TP-LfD approach to more complex industrial tasks including 

arrayed operations. It is expected to conduct a user-study for operators. Based on the research, 

it is aimed to eventually leading to the deployment of the improved TP-LfD approach on factory 

floors. 
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