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Abstract
In consequence of high cost pressure and the progressive globalization of markets, blanking, which represents the most eco-
nomical process in the value chain of manufacturing companies, is particularly dependent on reducing machine downtimes 
and increasing the degree of utilization. For this purpose, it is necessary to be able to make a real-time prediction about 
the current and future process conditions even at high production rates. Therefore, this study investigates the influence of 
data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine to classify 
abrasive wear states during blanking based on force signals. The performance of the model was quantitatively evaluated 
based on the model accuracy and the separability of the classes. As a result, it was shown, that the deviation of time series 
represents the key parameter for the resulting performance of the classification model and strongly depends on the sensor 
type and position, the preprocessing procedure as well as the feature extraction and selection. Furthermore, it is shown that 
the consideration of domain knowledge in the phases of data acquisition, preprocessing and transformation improves the 
performance of the classification model and is essential to successfully implement AI projects. Summarizing the findings of 
this study, trustworthy data sets play a crucial role for implementing an automated process monitoring as a basis for resilient 
manufacturing systems.

Keywords Resilient manufacturing · Machine learning in blanking · Data driven process optimization

Introduction

Forming processes often represent the most economical part 
of the value-added chain and represent a key factor in times 
of energy and raw material shortages due to the optimal 
utilization of materials as well as the lower specific energy 
requirement compared to subtractive or additive manufac-
turing processes (Lange, 1985). Even though forming pro-
cesses offer significant advantages, they are under high cost 
pressure. This is mainly caused by the low margins per part, 
which are directly influenced by short-term machine down-
times. Blanking processes are especially affected by this 
problem, as their high stroke speeds and required accuracy 

can lead to unplanned downtimes of tool and machine com-
ponents (Lange, 1985). In order to achieve the objective of 
high productivity under these circumstances, a reduction of 
machine downtimes and thus a maximization of the degree 
of utilization is to be aimed at. For this purpose, it is neces-
sary to be able to make a real-time prediction about the cur-
rent and future process conditions even at high production 
rates. Especially in the case of blanking, condition moni-
toring based on sensorial captured time series is difficult 
due to the complexity of the process. Blanking is influenced 
by more than forty parameters related to process-specific 
uncertainties (wear, varying specifications of semi-finished 
product, etc.) as well as machine- and tool-specific variables 
(clearance, cutting edge radii, etc.) (Hirsch et al. 2011). Fur-
thermore, considering data availability in the context of pro-
gressive digitalization of manufacturing processes, resilient 
process control and a comprehensive condition monitoring 
by qualified personnel or conventional monitoring systems 
is difficult to achieve. In order to be able to make real-time 
predictions about the process and thus avoid unplanned 
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machine downtimes, plan maintenance and identify devia-
tions of product quality at an early stage, it is necessary to 
set up data-driven process monitoring. Especially in times of 
digitization of the value-added chain, a lack of qualified per-
sonnel, reduced physical contact with the machine caused by 
an ongoing automation and a required remote access, trust-
worthy data sets play a crucial role to guarantee a resilient 
model to describe or predict the state of process. Industry 
4.0 (also known as Smart Manufacturing or Smart Factory) 
provides an approach to this, combining elements of artifi-
cial intelligence (AI), new types of sensors as well as state-
of-the-art information technologies (Oztemel & Gursev, 
2020). Central to this approach are data which are more and 
more available to companies due to high-performance pro-
cessors and sensors and cross-linking of processes (Moyne 
& Iskandar, 2017). Industry 4.0 aims to use this data avail-
able over the entire product life cycle to improve the value 
chain and build manufacturing intelligence (O’Donovan 
et al. 2015). This steadily increasing amount of data offers 
the possibility of making predictions about process correla-
tions that were not possible before. However, the value of 
this data is not only determined by its quantity, but also by 
the knowledge and information hidden in it. AI and the use 
of machine learning (ML) algorithms, as a key technology 
in Industry 4.0, offer exactly this knowledge for manufactur-
ing process (Penumuru et al. 2020). ML algorithms provide 
pattern recognition and the identification of correlations to 
large datasets and the derivation of predictive models (Wuest 
et al. 2016). Combining high-performance computing with 
valid data sets, ML algorithms build a basis for data-driven 
process monitoring and thus the real-time prediction of pro-
cess conditions (Tsai et al. 2015). While current literature 
focuses on the transfer of new ML algorithms to classify or 
predict the process condition, little work has been done so 
far to draw conclusions about the influence of the quality of 
the data set and related to this the influence of data acquisi-
tion, preprocessing and transformation on the performance 
of ML models. Especially in the blanking process the data 
set should be considered when using AI-supported condition 
monitoring. This is caused by the nonlinearity of the process 
as a result of transient elastic and plastic deformation of 

the sheet metal as well as the static and dynamic behavior 
of the press. Furthermore, over forty process variables can 
be identified that interact with one another and are related 
to uncertainties of the process (Jin & Shi, 2000). Even the 
smallest changes in these process variables can significantly 
influence the process. In contrast, small variations of process 
variables influence the time signals recorded by sensors less 
strongly. This leads to high demands on the quality of the 
acquired data even at high stroke rates in order to be able to 
physically differentiate effects in the process from noise even 
at minor variations (Groche et al. 2019).

Therefore, this works aims at describe the influence of 
data acquisition, preprocessing and transformation step on 
the performance of a multiclass support vector machine 
(mSVM) model. As a use case, the abrasive wear during 
blanking process is to be classified. The influence of these 
three steps on the performance of the mSVM is quantified by 
the accuracy and the separability between classes, related to 
the Mahalanobis distance. In order to transfer these findings 
to industrial blanking processes the resilience of the model 
to predict the current wear state is validated by industry-
related data sets at different stroke speeds.

Data‑driven monitoring of blanking 
processes

As shown in Fig. 1, a blanking process can be divided into 
three phases according to the force–displacement curve. In 
the punch-phase (I), the punch impacts on the sheet metal 
and starts to elastically deform the material. If the stresses 
that occur exceed the maximum shear strength of the mate-
rial, it tends to deform plastically. When the shearing stress 
finally exceeds the shear fracture limit, the material tears 
and the stored elastic energy is released abruptly. In the fol-
lowing push-phase (II), the component or the grid-shaped 
discard is completely pushed out of the die and the punch 
passes through the bottom dead center. Finally, the punch is 
pulled out of the die in the withdraw-phase (III) and with-
drawal forces occur as a result of jamming between the sheet 
and the punch.

Fig. 1  Force–displacement 
curve (Hoppe et al. 2019) (a) 
and partition of the cutting edge 
during blanking of sheet metals 
into characteristic areas accord-
ing to the VDI 2906-2 (b)
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The quality of blanked parts can be described by the 
characteristic areas of the cutting edge surface (see Fig. 1b). 
According to VDI 2906-2, these features are defined as a 
percentage of the blanked surface orthogonal to the cut-
ting line and are divided into rollover zone he , shear zone 
hl , rupture zone hf as well as the burr height hb . They are 
directly influenced by the wear state and reflect the current 
tool condition. Adhesive and abrasive wear occurs in the 
contact zone between punch, die and sheet metal and is clas-
sified into three types of wear, flank wear, face wear and 
tip wear (Hambli, 2001; Hernández et al. 2006). According 
to Hernández et al. flank wear especially occurs during the 
push- and withdraw-phase of a blanking cycle (Fig. 1 phase 
II and III). Due to the longer wear length, normal stresses 
between the lateral surface of punch, die and sheet metal lead 
to an increased flank wear, especially for large sheet thick-
nesses. Cutting soft steel grades ( Rm < 350 MPa) reinforces 
this effect (Hohmann et al. 2017). For example, Hohmann 
et al. showed in their work that a cold-rolled steel (DC03) 
tends to adhesive flank wear. This leads to higher frictional 
forces between punch and sheet metal which is directly influ-
encing the push- and withdraw-phase force signal of a blank-
ing process. In contrast, high-strength steel grades ( Rm > 
600 MPa) tend to abrasive tip wear which leads to a rounded 
cutting edge radius (Klingenberg & Singh, 2004). In con-
trary, face wear occurs especially when blanking thin sheets, 
which is due to high resulting surface pressures between the 
face surface of the punch and the sheet metal. In addition, 
temperature peaks in the contact zone lead to local melting 
and microstructural changes of the punch material which 
enhances micro-machining processes (Toussaint, 2000). The 
combination of these three wear states finally changes the 
geometry of the punch and die, as shown in Fig. 2. In this 
work we focus on the rounding of the cutting edge radii by 
abrasive wear. Hambli, Klingenberg and Singh as well as 
Kubik et al. showed in their work that exactly this abrasive 
wear is the most common cause of wear in blanking and 
has a significant influence on the quality of the component 
(Hambli, 2001; Klingenberg & Singh, 2004; Kubik et al. 
2021).

Over the last decade, many experimental and empiri-
cal studies have been conducted to understand wear in the 
blanking process. On the one hand, they investigated the 
influence of blanking parameters (clearance (Mucha, 2010), 
cutting edge radii (Klingenberg & Boer, 2008), sheet-metal 
thickness (Hambli, 2001) and the number of blanking cycles 
(Cheon & Kim, 2016)) on the wear evolution. On the other 
hand, the influence of occurring wear states on the qual-
ity of the component was investigated (Hernández et al. 
2006; Makich et al. 2008). In addition to these empirical 
and experimental investigations, great progress has been 
made in the 2D and 3D numerical simulation of wear phe-
nomena during blanking. Using computational methods, 

several authors tried to predict tool wear and the result-
ing form errors on the blanked parts (Hambli et al. 2009) 
and to optimize process parameters to reduce these errors 
(Faura et al. 1997). According to Hernández et al., these 
numerical simulations are very complex, due to large defor-
mations, ductile fractures and crack propagation occurring 
during the process of blanking (Hernández et al. 2006). Due 
to the highly non-linear behavior of blanking processes, a 
detailed description of the wear state by means of empirical 
or numerical models is only possible to a limited extent. 
For this reason, real-time monitoring of the wear state is 
difficult to implement in an industrial production environ-
ment and is based on diagnostic approaches that focus on 
the detection, isolation and identification of defects as they 
occur (Jemielniak et al. 2012). In these systems, empirical 
knowledge is necessary to determine thresholds and enve-
lopes to detect erroneous process conditions. The potential 
of the data is not fully exploited and is limited to the identi-
fication of binary faults (Isermann, 2011). Identification of 
error-cause relationships or the quantification of the size of 
wear does not take place in the industrial production envi-
ronment. In contrast, a large number of studies in the lit-
erature investigated data-driven approaches to fully exploit 
the potential of given data sets for detailed description of 
wear conditions in manufacturing processes. Especially in 
the field of machining authors have penalized ML models for 
predicting wear states in the last decades. They focus on pre-
dicting wear-related quality features of machined parts [27, 
28], quantifying wear of machining tools (Shen et al. 2020; 
Zhou et al. 2020) or predicting tool life [31]. In contrast, ML 
models for blanking processes are mainly used to describe 
discrete fault states, while the prediction and quantification 
of wear conditions is hardly found in recent literature. Jin 
and Shi developed a wavlet transformation technique for 
feature-preserving data compression of tonnage information 

punch

die

punch flank wear

face wear

tip wear

Fig. 2  Geometry of the active element worn surface in generic case 
of tool wear (Hernández et al. 2006)
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during a stamping process. Based on these features a seg-
mental thresholding strategy similar to a decision tree is 
presented to identify a change in thickness of the material 
(Jin & Shi, 2001). Lee et al. investigated an architecture of 
an automatic supervisory system for monitoring wear during 
a blanking process. The system employs an autoregressive 
time-series model to predict the online measured maximal 
blanking force. Based on the autoregressive model, coeffi-
cients wear-related state of the tool (sharp vs. worn) are pre-
dicted using a linear discriminant function (Lee et al. 1997). 
In a similar way, Ge et al. extracted features from a force 
signal of a blanking process by means of an autoregressive 
model and used them in a Hidden Markov Model to classify 
faulty conditions such as misfeeding of the work piece, slug 
pulling or variation of the sheet thickness (Ge et al. 2004). 
Bassiuny et al. investigated an empirical mode decomposi-
tion to extract the features from the strain signals of a sheet 
metal stamping process. Based on the features, a Hilbert 
marginal spectrum is calculated which is used to classify 
the faulty process conditions (misfeed and material to thick) 
by a learning vector quantization network (Bassiuny et al. 
2007). Jin and Shi extracted features from the tonnage signal 
of a stamping process by a principal component analysis and 
performed a regression analysis to model the relationship 
between features and process variables. Hierarchical classi-
fiers and a cross-validation method are used for root-cause 
determination to predict the binary state (normal / abnormal) 
of the process variable (Jin & Shi, 2000). Hambli presented 
a backpropagation neural network algorithm for predicting 
burr height formation on blanked parts, considering the tool 
clearance and its wear state. The inputs of the artificial neu-
ral network (ANN) are generated by a finite element analysis 
of the circular blanking process. Validation of the results by 
the ANN showed good agreement with a deviation of 10% 
between predicted and experimental burr height (Hambli, 
2001). Next to the presented regression models and ANN, 
Support Vector machines are getting more and more attrac-
tive for data driven analysis and their application to manu-
facturing processes. In particular, for monitoring machinery 
(health) condition (Goyal et al. 2020; Liu et al. 2017) or for 
quality classification of machined, additive manufactured 
or welded parts (Baturynska & Martinsen, 2021; Çaydaş & 
Ekici, 2012; He & Li, 2016). In this regard, the support vec-
tor machine (SVM) is not only one of the most powerful and 
robust classification and regression algorithms, but has also 
significantly improved the handling with multi classification 
problems and unbalanced data sets (Cervantes et al. 2020). 
Even with these advantages, the use of SVM in sheet metal 
forming processes is mainly limited to the classification of 
discrete errors. Ge et al. presented in his work SVMs with 
different kernel functions to classify erroneous states dur-
ing a blanking process. The experimental results showed 
that SVM can achieve a success rate of 99% detecting these 

faults (Ge et al. 2002). He presented in his study a one class 
SVM for detecting abnormal health conditions (ok / nok) 
of a progressive stamping machine. To achieve a desirable 
performance considering a trade-off relationship between 
the false alarm rate and false detection rate hyper param-
eters of the SVM need to be optimized (Qiu et al. 2020). 
Another work is presented by Zhou et al., which uses an 
SVM to identify a missing part in one of the die stations of 
a progressive tool using tonnage signals (Zhou & Jin, 2005). 
Considering this literature, SVM approaches are only used 
for binary classification. The extension of this binary SVM 
to a multiclass scenario is not yet state of the art in metal 
forming and is also limited in other domains.

Common to all these ML approaches is the need for a 
valid data set that is used to train and validate the model 
based on experimental or simulatively generated data. No 
effort was invested into pre-processing the data as this is 
one of the most time-consuming steps in applying an ML 
model to scientific problems and how the data is acquired. 
Investigations into the extent to which sensor configuration 
and positioning, as well as the step of data pre-processing, 
influence the model performance for predicting the process 
state or the quality of manufactured parts are not to be found 
in the literature. Especially in the process of blanking, which 
takes place at production rates up to 1000 strokes per min-
ute (spm), careful selection and integration of the sensor 
technology as well as the preparation of the data before the 
modeling step are of crucial importance. The high stroke 
rates lead to short tool engagement times, complex stresses 
and strains, and a nonlinear course of sensorial measured 
time series (Hambli, 2001). In addition, the process is 
affected by vibrations caused by dynamic effects. During 
a blanking cycle, impacts occur when the blank holder and 
the punch hit the sheet metal, the sheet metal breaks and 
the punch is pulled out of the sheet metal. Each impulse 
induces vibrations in the tool which directly influence the 
acquired time signal. These vibrations are superimposed on 
the time signal and their influence increases significantly 
with higher stroke speeds. Hirsch et al. as well as Slavič 
et al. identify an increase of the maximum process force 
of approximately 14% when the stroke speed difference is 
increased by 200 spm (Hirsch et al. 2011; Slavič et al. 2014).

A summary of the literature shows that ML models can 
fully exploit the potential of existing data to describe, evalu-
ate and predict process states in manufacturing processes. 
However, due to the complexity and dynamics of blanking 
processes, as well as the nonlinear and transient characteris-
tics of the measured time series, only a few studies applying 
ML models to the process can be found in the literature. In 
particular, for wear prediction, the literature is limited to the 
identification of binary states. Furthermore, in order to apply 
a robust ML model to describe wear states during blanking, 
it is essential to consider the steps of data acquisition (sensor 
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position and sensor type) data preprocessing and data trans-
formation. Therefore, in this study an SVM is applied to 
classify the wear states of abrasives in a blanking process 
and the influence of the data acquisition and data prepara-
tion step on the performance to the model is quantified. To 
achieve this objective, Sect. 3 presents the procedure in this 
work. For this purpose, the experimental setup is presented, 
force signals are descriptively analyzed and (SVM) to clas-
sify the wear states in the presented blanking process are 
explained. In Sect. 4, the qualitative and quantitative evalu-
ation of the SVM is carried out depending on the sensor 
configuration (type and position), the preprocessing (filter-
ing) and the transformation (extraction and selection). The 
resilience of the model is validated using different stroke 
speeds and associated uncertainties due to dynamic effects.

Experimental setup and procedure

In order to quantify the influence of data acquisition, pre-
processing and transformation on the performance of mSVM 
for predicting the wear states, the experimental procedure is 
shown Fig. 3. In the first step, the acquisition of force signals 
and the measuring of the different stages of the abrasive 
worn punches are conducted. The force signals are acquired 
during each stroke cycle varying sensor positions and types 
(Table 2). Afterwards, feature engineering and a principal 
component analysis (PCA) is conducted to extract features 
from these force signals. The wear states are quantified by 
optically measured cutting edge radii of the punches. As 

demonstrated in Sect. 3.3, even two features derived from 
the force signals represent over 95% of the total variance in 
the data set. Therefore, the two major principal axes ( f1 and 
f2 ) serve as input while the five wear states serve as output 
of the mSVM. The acquired process and quality data (fea-
tures fi and wear states ri ) are divided into test and training 
data sets. Finally, the training and validation of the mSVM 
takes place based on these data. Figure 3 shows the required 
steps for predicting the wear state during blanking including 
data collection, feature extraction, feature evaluation, and 
application of mSVM.

Press and experimental tool

All experiments were carried out on a high-speed press from 
Bruderer AG (BSTA 810). The press allows a nominal force 
of 810 kN and stroke rates of up to 1000 spm at a stroke 
height of 35 mm. The machine parameters for the experi-
ments were set to a stroke distance of 35 mm and stroke 
speeds of 200 spm, 300 spm, 400 spm and 500 spm. The 
geometry of the punch was chosen to be a cylindrical with a 
diameter of 6 mm. The gap between punch and die is set to 
0.15 mm and in relation to the sheet thickness of the semi-
finished product of 2 mm, this results in a clearance of 7.5%. 
Table 1 shows the tool and press parameters as well as the 
properties of the sheet metal.

The multisensory tool consists of a lower and an upper 
part, which are connected to each other by four guide col-
umns. The cylindrical punch is connected to the adapter 
plate in the upper tool via a plunger. A piezo electrical 

wear state
(cutting edge

radii )

acquire of
process &

quality data

force signals
,

normalised
features

pre-processing
& feature
extraxtion

split of data:
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& 20% test
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trained SVM predicted
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semi-finshed
product

blanking
process
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Fig. 3  Procedure for predicting abrasive wear states during a blanking process including the steps of data acquisition, feature extraction, feature 
selection and mSVM application

Table 1  Tool and press parameters and the properties of the sheet metal for conducting the experiments

Material Press Tool

Material description DC03 (1.0347) Stroke height in mm 35 Diameter of punch in mm 6
Sheet thickness in mm 2 ± 0.02 Stroke speed in spm 200 … 500 Clearance in % 7.5
Tensile strength in MPa 299.8 ± 2.9 Cutting edge radii (wear state) in µm 7 … 604
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force washer is integrated into the direct force flux. In 
the lower tool, the die is integrated into an adapter plate 
and connected to the base plate via plungers. Therefore, 
four force washers are integrated into the direct force 
flux. In addition, four linear strain gauges combined to 
a full bridge are taped on the plunger, a measuring pin is 
mounted in a hole of the adapter plate in the upper tool 
and a strain sensor is screwed into the indirect force flow 
to the columns of the press. Figure 4 shows the detailed 
design of the tool, its integration into the press and the 
positioning of the sensors.

Acquisition of process and quality data

To measure the force signals, various sensor types were inte-
grated at different positions in the tool and the press (Fig. 4). 
Table 2 summarizes these sensor types and positions. Four 
sensor types are differentiated, resistive strain gauges, piezo-
electrical force washers and piezo-electrical measuring pins. 
In the upper tool an uniaxial piezo-electrical force washer 
(Kistler 9051C) with a nominal force of 120 kN was inte-
grated into the direct force flux. In addition, the force signals 
are measured in the direct force flux of the lower tool by four 
triaxial piezo-electrical force washers (Kistler 9047C) with 
a nominal force of 80 kN. The symmetrical arrangement of 
the sensors allows the cutting force to be spatially resolved. 
For the further investigations in this work, these four force 
signals parallel to the stroke path of the ram are summed up 
to a total force. In addition to these piezo-electrical force 
washers, a piezo-electrical quartz transverse measuring pin 
(Kistler 9240 A) is integrated on the adapter plate in the 
upper tool. The size of 8 × 14.4  mm2 allows measuring of 
strains from 0 to 500 �� even with limited space in the tool. 
The charge distribution resulting from a change of the load 
on the force washers and the measuring pin is converted 
into a voltage signal by a charge amplifier (Kistler 5073A). 
In addition to the piezo-electrical sensors, low-cost strain 
gauges and strain sensors are integrated into the tool and the 
press. Four linear strain gauges (VPG C4A-06-125SL-350) 
combined to a full bridge are installed between the punch 
holder and the adapter plate. Strain sensors (Baumer DSRT 
23DF) are already mounted to the columns of the press and 
are used to monitor the nominal forces to protect the press 
from overloading. The force washers, quartz transverse 
measuring pin and the charge amplifier as well as the strain 
gauges were calibrated according to DIN EN ISO 376. For 
this purpose, the tool was integrated into a universal test-
ing machine (Zwick Roell Z100) and cylindrically loaded 
at different force levels. The calibration factor of each sen-
sor is determined by calculating the slope of the calibra-
tion lines. Since the strain sensors were already integrated 

measuring pin
Kistler 9240Apunch

eddy current 
sensor µε EU8

force washer 
Kistler 9047C

press: Bruderer BSTA 810
stroke: 35 mm

base plate

upper tool

lower tool

adapter plate

adapter plate

base plate

die

guidance

force washer 
Kistler 9051C
strain gauge
VPG C4A

strain gauge Baumer DSRT 22DD

piezo-electrical strain gauge measuring pin

Fig. 4  Sectional view of a multisensory blanking tool with respect to 
the positioning of the force sensors

Table 2  Various sensor types and their position inside the tool /press for acquiring the force signals

Specification Position Calibration factor Type NI module Description in paper

Uniaxial force washer
Kistler 9051C

Upper tool in direct force flow 446.34 N/V Piezo-electrical NI 9220 Force washer upper tool (reference)

Uniaxial force washer
Kistler 9047C

Lower tool in direct force flow 1499.68 N/V Piezo-electrical NI 9220 Force washer lower tool

Quartz measuring pin
Kistler 9240A

Adapter plate upper tool in 
indirect force flow

− 7556.45 N/V Piezo-electrical NI 9220 Piezo pin

Linear strain gauge
VPG C4A

Shell surface of the punch 2.34 ∙  105 N

V∕V
Resistive NI 9220 Strain gauge punch

Foils strain gauge
Baumer DSRT 23DF

Column of the press frame 2.51 ∙  104 N/V Resistive NI 9237 Strain sensor press frame
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into the press, a calibration was already carried out by Bru-
derer AG. The voltage signals of the force sensors and the 
eddy current sensor are recorded by a CompactRIO system 
with integrated measuring modules NI 9220 (analog input 
± 10 V), NI 9215 (analog input ± 10 V) and NI 9237 (analog 
input ± 25 mV/V).

Since the blanking process is strongly influenced by the 
dynamic effects resulting from the high stroke rates, the set-
ting of the sampling frequency has to be set high enough. 
The required sampling frequency depends on the selected 
stroke rate. Thereby, a complete stroke cycle of the Bru-
derer press from top dead center to bottom dead center 
back to top dead center is determined by 360°. The actual 
tool engagement time only takes place in a limited angular 
range. With an assumed stroke frequency of 500 spm and 
an angular range of 160° to 210°, this results in a time of 
0.024 s while the tool is in contact with sheet metal. As 
the tool engagement time is further divided into the three 
phases (Fig. 1), a time window of 3.3 ms results for the 
punch-phase. In order to be able to continue processing the 
dynamic effects under these circumstances, a sampling fre-
quency of fs 50 kHz was selected. To keep the amount of 
data as small as possible, only a part of the entire stroke is 
recorded. Therefore, data recording starts if the tool passes 
an inductive proximity sensor. During the reverse stroke, the 
tool again passes past the inductive proximity sensor and the 
measurement is stopped. This finally results in a measuring 
range of 120°–240° or punch penetration of 13 mm and a 
time series with 2070 samples for the highest stroke speed 
of 500 spm. In addition to the acquired force signals, quality 
data (abrasive wear state of the punch) is optically measured 
by a confocal white light microscope (NanoFocus AG type 
μsurf explorer). It is assumed that abrasive wear causes the 
rounding of the cutting edge radii of the punch (Falconnet 
et al. 2015; Hohmann et al. 2017). In order to approximate 
the reproducible abrasive wear conditions without the need 
for time-consuming long-term experiments, the cutting edge 

radii are mechanically rounded by a post machining process. 
The cutting edge is varied in five steps starting from a sharp 
cutting edged radii r0 . Table 3 shows the results of the five 
optically measured the five wear states represented by the 
cutting edge radii ri and the abrasive wear volume (Fig. 5).

Based on these five wear states, the experimental proce-
dure is shown in Table 4. 100 stroke cycles at four differ-
ent stroke speeds are acquired for each wear state, resulting 
in twenty single experiments and 2000 time series for all 
experiments. Considering the number of sensor types and 
positions, 10,000 time series must be evaluated.

Descriptive analyses of force signals

As mentioned above the time series characteristics of the 
measured force signals are nonlinear, transient and affected 
by dynamic effects. Therefore, in the following section the 
force signal quality is quantified by of descriptive statis-
tics. Differences between the sensor positions and types, 
as well as the influence of increasing stroke speed, and the 
related dynamic effects have to be quantified. To compare 

Table 3  Quantitative characterization of the abrasive wear states by 
optically measuring the cutting edge radii r

i

Wear state Cutting edge 
radii r

�
 in µm

Abrasive wear 
volume in  mm3

Wear state: no abrasive wear
Cutting edge radii r0 (reference)

7.624 0.003

Wear state: small abrasive wear
Cutting edge radii r1

66.717 0.005

Wear state: medium abrasive wear
Cutting edge radii r2

254.281 0.178

Wear state: high abrasive wear
Cutting edge radii r3

354.459 0.361

Wear state: critical abrasive wear
Cutting edge radii r4

604.826 1.046

Fig. 5  Quantitative and qualitative characterization of the abrasive 
wear states by optically measuring the cutting edge radii ri

Table 4  Experimental procedure for acquiring force signals consider-
ing sensor positions und types, stroke speeds v

i
 and wear states r

i

Parameter Variations

cutting edge radii ri in µm
r0 = 7, r1 = 66, r2 = 254, r3 = 354 and r3 = 604

5

Stroke speeds vi in spm
v0 = 200, v1 = 300, v2 = 400 and v3 = 500

4

Sensor position and sensor type
See Table 2

5

Total number of experiments 1000
Number of strokes per experiment 100
Total number of time series 10,000
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the influence of different sensor positions and types as well 
as stroke speeds on the quality of the acquired force signals 
this descriptive analysis is exemplarily conducted with an 
unworn punch ( r0 ) and a stroke speed of 200 spm. Figure 6 
shows the scaled and offset-adjusted force signals of 100 
single strokes for each sensor described in Table 2. During 
the further investigations, the force washer in the upper tool 
is used as a reference. In Fig. 6 the mean of 100 strokes of 
the reference sensor is visualized with a red line to compare 
it with the 100 force signals of each sensor type.

The qualitative analysis of the force signal shows that 
especially strain gauge sensors tend to noise, which is visual-
ized by the wide scatter band. While the piezo-electrical sen-
sors show less noise, especially the force washer in the lower 
tools is superimposed by vibrations. In addition, the strain 
sensor mounted to columns of the press shows superimposed 
by vibrations but with a lower frequency 80.4 ± 17.3 Hz for 
all stroke speeds caused by the eigenfrequency of the press. 
Looking at the time signals, it is obvious that the sensor 
types and position influence the deviation of the measured 
time series. In order to quantify this deviation as well as to 
explore the cause for it the standard deviation of the force 
signal at each sample point s is determined for each sensor 
type. Let xi be the i-th sample i ∈ {1,… , n} of the force 
signal of a specific sensor type and x the mean of the force 

signal of a specific sensor type, standard deviation of the 
sample is calculated as follows

Figure 7 shows the standard deviations calculated from 
100 strokes cycles for each sensor type.

The red line visualizes the standard deviations of the ref-
erence sensor (force washer upper tool). The results show a 
high averaged deviation over the entire stroke cycles for the 
strains gauges (strain gauge punch and strain sensor). In con-
trast, the mean deviation of piezo-electrical sensors is neg-
ligible over the entire stroke cycle (force washer lower and 
piezo pin). Whereby the piezo pin shows a slightly higher 
mean standard deviation than the force washer in the lower 
tool. Furthermore, the piezo-electrical sensors show a peak 
of the standard deviation in the sampling range from 845 to 
855 (P1) and 1150 to 1160 (P2).

Taking the sensor type and sensor position as well as 
the stroke speed into account allows the conclusion that 
the standard deviation of each experiment (including 1000 
strokes) is mainly caused by electrical noise and dynamic 
effects. The dynamic effects result from the static and 

(1)s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2

Figure 6  Force signals of the sensor types for 100 single strokes (wear state r0 and stroke speed 200 spm) compared to the mean force signal of 
the reference sensor
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dynamic behavior of the press as well as process-related 
vibrations (P1 and P2). At peak P2 the material breakage is 
initiated and elastic energy stored in the system is abruptly 
released. Caused by the masses located between the form-
ing zone and the position of measurement, inertia forces are 
induced to the system and superimpose vibrations to the 
force signal. Especially the comparison between the piezo-
electrical sensors in the upper and lower tool (Fig. 6) shows 
vibration superimposed to the force signal in the lower tool 
caused by an uneven mass distribution. In this case the mass 
of the components between the sensors and the forming are 
ten times higher in the lower tool than in the upper tool. In 
contrast, peak P1 results from the punch hitting the sheet 
metal and initiating an impact into the structure of the press. 
Since the impact of the punch on the sheet is a short impulse, 
the product of inertial forces and exposure time is approxi-
mated by a Dirac impulse. This Dirac impulse is superim-
posed on the actual force signal and leads to an infinite, 
continuous frequency spectrum. Especially this impulse is 
recognizable in the time series of the strain sensor (Fig. 6).

In addition to the dynamic effects the deviation of the 
force signal depends on the electrical noise. Especially strain 
gauges which are indirectly measuring the force related to 
a change in the resistance are affected by this. On the one 
hand, the change of resistance is caused by the elongation 

of the measuring grid. On the other hand, the resistance is 
influenced by the electrical contacting of the sensors, the 
length of the cables and electrostatic as well as electro-
dynamic phenomena (e. g. grounded loops, thermal, shot, 
flicker, burst and transit-time noise) which are further sum-
marized under the term electrical noise.

Next to the dynamic effects and the electrical noise, 
deviations in the force signals result from a time shift 
(already few samples) of the force signal. Although the sig-
nal between following strokes is absolutely repeatable, even 
a small offset of a few samples can cause large deviations, 
especially with strongly fluctuating signals. This effect is 
especially demonstrated by the shift of the point in time at 
which the material breaks and the punch hits the sheet metal 
caused by varying local properties of the material (tensile 
strength, elongation at break, crystallographic defects) or 
the semi-finished product (sheet thickness, lubrication, etc.). 
However, it is not only the material properties but also the 
hardware of the measuring chain (A/D converter, charge 
amplifier, measuring modules, performance CPU, etc.) that 
influences a time shift between following force signals. In 
particular, triggering the start and end point of the meas-
urement is effected by uncertainties of the magnetic field 
detected by the eddy current sensor. Because of the uncer-
tainties of this inductive proximity sensors, a shift on the 

Fig. 7  Standard deviation of the sensor types for 100 single strokes (wear state r0 and stroke speed 200 spm) compared to the standard deviation 
of the force signal of the reference sensor
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time axis also occurs even if the signal between following 
strokes is absolutely repeatable. To summarize, the devia-
tions in the force signal are strongly influenced by vibrations 
or electrical noise which are amplified by a time shift (few 
samples) of the force signals from stroke to stroke due to 
the properties of the material as well as the design of the 
measuring chain. In order to quantify the influence of the 
sensor types and sensor position as well as the stroke speed 
on deviation of the signal in each stroke cycle by one charac-
teristic value, the average standard deviation s is determined. 
Equation (2) is used to calculate the confidential range with 
a statistical certainty of 99%. Error bars are estimated by 
the value � which consists of the arithmetic mean x and the 
confidential limits. These confidential limits are calculated 
from the student factor t , the standard deviation of the sam-
ple s number of observation n.

Table 5 summarizes the averaged standard deviations s 
for an unworn punch ( r0 ), the four stroke speeds and all sen-
sor types. It shows qualitatively that the averaged standard 
deviations increase with higher stroke speeds, progressive 
distance from the forming zone, a direct measurement com-
pared to an indirect measurement and the use of a resistive 
sensor compared to a piezo electrical sensor.

Data transformation

The experimental procedure shown in Table 4 results in a 
data set that has to be prepared for mSVM before applica-
tion. A major step of this data transformation is the reduction 
of the dimension of the data set by removing the redundant 
data (Liu & Motoda, 1998). A large data set results in a high 
model complexity which leads to poor generalizability of the 
model and to high computational times. A trade-off between 
the accuracy of the model and the computational effort can 
take place by extracting features from the data set. Since 
the performance of the ML algorithm is significantly influ-
enced by this data transformation, the feature extraction is a 
key factor for successful ML projects (Domingos, 2012). In 

(2)� = x ±
t ⋅ s√
n

engineering applications, features are usually extracted from 
sensorial measured time series. According to Li, features 
can be extracted either from the time domain, the frequency 
domain or the time–frequency domain (Wang & Gao, 2006). 
The feature extraction from the time domain can be derived 
directly from the sensor signals. Mostly these are statistical 
parameters such as maximum values, mean values, standard 
deviations, skewness, kurtosis or the root mean square. Fur-
thermore, Hoppe et al. as well as Kubik et al. were able to 
show in their studies that engineering feature from the time 
domain represent effective parameters for describing process 
conditions during blanking (see Fig. 8) (Hoppe et al. 2019; 
Kubik et al. 2021). Therefore, the force signal is initially 
divided into three phases and characteristic points which 
define the start and end points as well as extrema during 
each phase are identified. Finally, the features are derived 
from these characteristic points and can be described as 
the length lj, i , maximum force Fj, i and work done Wj, i in 
each. In this case the index j describes the respective phase 
of the cutting process (punch-phase ( p ), push-phase ( pu ), 
withdraw-phase ( w )) and i the number of variations in the 
experiments.

For extracting features from the frequency domain 
spectral and frequency analyses are performed. While the 
use of frequency domain analyses (Hilbert-Huang Trans-
formation, Short-Time Fourier Transformation, etc.) are 
already widespread in domains like health and condition 

Table 5  Averaged mean 
standard deviation of the model 
for all sensor types over all 
stroke speeds for an unworn 
punch ( r

0
)

Stroke speed 
in spm

Force washer 
upper tool in N

Force washer 
lower tool in N

Piezo pin in N Strain gauge 
punch in N

Strain sen-
sor frame 
in N

200 13 ± 1 36 ± 1 71 ± 1 888 ± 7 390 ± 15
300 14 ± 1 40 ± 2 74 ± 2 994 ± 7 446 ± 25
400 15 ± 1 45 ± 1 389 ± 9 1160 ± 11 531 ± 18
500 21 ± 2 47 ± 3 517 ± 5 1169 ± 9 799 ± 34

Fig. 8  Features extracted from force signal
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monitoring of machining processes, these methods are 
rarely used in forming technology production (Aydin et al., 
2012). Representatives of time–frequency domain tech-
niques are the wavelet transform, which are particularly 
suitable for the investigation of instationary time series 
(Fan et al. 2001). The most important technique for feature 
extraction in engineering applications is the principal com-
ponent analysis (PCA) (Addison et al. 2003). In production 
engineering applications, PCA is used for the purpose of 
quality control (Wu & Chyu, 2004), condition monitoring 
(Rato & Reis, 2020) and predictive maintenance (Lewin, 
1995). PCA is a multivariate statistical technique that 
handles large amounts of data via orthogonal projection. 
It reduces the dimensionality of a data set by projecting 
original data into a lower dimensional orthogonal space 
defined by a few significant eigenvectors. Applying this 
method to a blanking process means that we are searching 
for a compact representation of the measured force signals 
that still contains the information about relevant varia-
tions. In this paper PCA is used to extract features from 
experimentally acquired force signals, that denoted as a 
matrix X ∈ ℝ

m×p , in which each row vector xi is a com-
plete cycle of a force signal with p measurement points, 
and m is the total number of observations. Therefore, the 
first step of the PCA is to compute the covariance matrix

of a zero-mean set of NN measurement series

to receive the variance at each point in time and also the 
joint variability with all other points in time. The princi-
pal components are computed by solving the eigenvalue 
problem of the covariance matrix � ∈ ℝ

p×p

The vector vj ∈ ℝ
p×1 ( j = 1,… , p ) is the normalized 

eigenvector of the sample covariance matrix � of X . Using 
these principal axes vj , each force signal xi ( i = 1,… ,m ) 
can be transformed into a couple of features

When a data set is projected to eigenvectors, it is often 
found that only the first few eigenvectors, corresponding to 
larger eigenvalues, are associated with the systematic pro-
cess variations. All remaining eigenvectors reflect the vari-
ations of the process noise (Jin & Shi, 2000). This noise 

(3)� = cov
�
X

�
=

⎡
⎢⎢⎣

�11 ⋯ �1p
⋮ ⋱ ⋮

�p1 ⋯ �pp

⎤⎥⎥⎦

(4)X = X − � assuming �i =

∑p

j=1
xi,j

p

(5)� ⋅ vj = �j ⋅ vj

(6)fj,i = v
T
j
⋅ xi

is caused by random disturbances, electrical noise, uncon-
trollable process variations or dynamic effects. Therefore, 
dimension p of the original PCA can be reduced into a 
smaller dimension popt ( popt < p ). To do this, the principal 
axes are first sorted by their size of the eigenvalue and 
after this the dimension is reduced until the selection index 
�opt becomes smaller than a defined value.

There is no methodical approach to define this selection 
index, �opt set to 95%. This ensures that more than 95% of 
the variance in the force signal can be explained by the 
popt largest eigenvalues. Depending on the stroke speed 
every data set consists of N  samples, being N = f

(
vi
)
 , and 

500 dimensions which are related to the experiments con-
ducted for each stroke speed. Since force signals from five 
different sensors are recorded, the data set is dimensioned 
as Xi ∈ ℝ

500×N with i ∈ {1, 2, 3, 4, 5} . The five correspond-
ing wear states are captured in the output vector Y ∈ ℝ

1×N 
with the same dimensions. Looking at the selection index 
�opt the first two eigenvectors explain 96.2% of the total 
variance in the signal. For further investigations only these 
two eigenvectors will be used as input variables for the 
mSVM. To investigate the influence on the performance 
of the mode, three additional features ( f3, f4 and f5 ) from 
PCA as well as nine engineered features (Fig. 8) are pro-
vided. To ensure the comparison of the models, even by 
combining PCA and Engineered Features, the features are 
normalized by the Z-score.

The machine learning method of SVM

As described in Sect. 2 there are many different types of 
machine learning methods that can be applied for clas-
sification tasks. Therefore, die most suitable method for 
classifying the wear states during blanking hast to be 
determined during a grid search. In this study a twostep 
grid searches were executed. On the one hand to find the 
best machine learning method and on the other hand the 
optimize the parameter configuration of the chosen ML 
method. From the force signal of the strain gauge (VPG 
C4A) on the punch, the ML models were trained and vali-
dated. Based on the classification accuracies for predicting 
the wear conditions the performance of the model was 
evaluated. For training the ML algorithm, the first two 
principal axes (process data) are available as input data 
and the wear states (quality data) as output data for each 
time series. To keep the ML models as simple as possible.

(7)�opt =

∑popt

j=1
�j∑p

j=1
�j
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To keep the model as simple as possible, mainly linear 
classification models were compared. It should be noted, 
however, that the use of non-linear classification functions 
can improve the model performance. Since the focus of this 
study is to show how data acquisition, data preprocessing 
and data transformation affects the model performance, a 
simple ML model is chosen. Therefore, a linear discriminant 
analysis (LDA), random forest (RF), mSVM with a linear 
kernel function, Naive Bayes classifier (NB), as well as 
k-nearest neighbor classifier (k-NN) for classifying the abra-
sive wear states were tested. In Fig. 9a the accuracy achieved 
with a fivefold cross validation for the best configuration 
of the machine learning methods are shown. The accuracy 
values of the classification results from the NB and k-NN are 
not good and only depicted for completeness. The best pre-
diction results were obtained from the mSVM with a linear 
kernel function. In this simplest case of linearly separable 
classes, an optimal hyperplane is sought, that maximizes the 
distance between the best separating plane and the nearest 
data. Considering a dataset given as [(x1 , y1 ). ( x2 , y2 ), … ( xi , 
yi )] consisting of m training samples, where xi ∈ ℝ

m is an 
m-dimensional feature vector representing the i-th training 
tuple and yi ∈ {−1, 1} is the corresponding class label the 
optimal hyperplane can be found by the following optimiza-
tion problem:

The hyperplane in the feature space can be described by 
the equation wT

x + b , where w ∈ ℝ
m and b ∈ ℝ . In the case 

of linearly nonseparable classes, no hyperplane is found that 
is capable of correctly classifying every training sample. 
In this case the optimization problem can be described by 
setting a soft margin by including a slack variable �i and 
a tuning parameter C , the box constraint. This parameter 
allows the training algorithm a certain misclassification in 
the training set and applies costs to this misclassification. 
The higher the box constraint, the higher the cost for the 
misclassified points, leading to a stricter separation of the 
data (Cherkassky & Ma, 2004). In this simplest type, SVM 
divides the data points linearly into classes. In real-world 
problems, however, we find more than two classes. In this 
paper we have to deal with five abrasive wear states (cut-
ting edge radius ri ). Therefore, this mSVM is broken down 
to multiple binary SVMs. Two commonly used techniques 
one-vs-rest (OVR) and one-vs-one (OVO) can be found in 
the literature. While the OVO approach splits the dataset 
into one dataset for each class versus every other class, the 
OVR approach splits the dataset into one binary dataset for 
each class (Kijsirikul & Ussivakul, 2002). Considering an 
M-class problem, where yi ∈ {1,… ,M} are the correspond-
ing class labels with i-the SVM optimization problem can 
be described as follows:

The mSVM used in this work deal with a classification 
of five different wear states by considering the problem as 
collection of binary classification problems using the OVO 
approach. As mentioned above, in the second step of the 
grid search the hyperparameter of the mSVM with a linear 
kernel are optimized and set to �i = 0.65 for the slack vari-
able and C = 413 for the tuning parameter. Figure 9b shows 
the optimized hyperparameter for the mSVM.

With principal axis extracted from the PCA and the engi-
neered features fifteen features as input data and five wear 
states as output data are available for the mSVM. The model 
is trained for every combination of stroke speed and sensor 
type, resulting in 200 classification models. For each model 
the input data set is reduced to two significant parameters 
which always consist of the first two features from the PCA. 
Only for the investigation of the influence of data trans-
formation on the model performance (Sect. 4.3) different 

(8)
minimize: L(w) =

1

2
w
2

subject to: yi
(
w
T
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(a) model performances for different ML models

(b) hyperparameter plane from grid search

Fig. 9  Classifications results for each tested ML method (a) and opti-
mized hyperparameter for the mSVM with linear kernel function (b)
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feature combinations are used. To train the model 80% 
( X2×400 ) of the data is used while 20% ( X2×100) is applied to 
ten-fold cross-validation of the model. For the final evalu-
ation of the model and its performance accuracy as well 
as the overlap of the probability density function between 
classes separated by the SVM are considered. The accuracy 
describes the percentage of correct predictions and is defined 
as the quotient of number of observations correctly assigned 
to a class in relation to all observations. In addition to this 
accuracy, the performance of the model is determined by 
calculating the Mahalanobis distance dM . Calculating this 
distance allows to quantify the separability of classes by con-
sidering the distance between the centroid of these classes as 
wells as the variance inside each class. As the results of this 
study will show, the mSVM is suitable for the classification 
of abrasive wear states during blanking and achieves close 
to 100% accuracy, depending on the sensor position, the 
sensor type as well as the stroke speed, and the calculation 
of Mahalanobis distance is of interest for the separation of 
closely adjacent wear states. In the further investigations 
of this paper, the Mahalanobis distance is calculated only 
for the separation between the wear conditions ‘little (low) 
wear’ ( r2 ) and ‘medium wear’ ( r3).

Evaluation of model performance

In the following section the influence of data acquisition, 
preprocessing and transformation on the performance of the 
mSVM will be shown. The model performance is evaluated 
by the accuracy and the Mahalanobis distance. In order to 
quantify the resilience of the classification model, the per-
formance of the mSVM is analyzed at different stroke speeds 
(see Table 4). To quantify the influence of data acquisition, 
preprocessing and transformation, the trained models are 
compared with a reference model for each experiment. This 
reference model is obtained by training the mSVM with the 

force signals of the piezo electrical sensor in the upper tool 
(force washer upper tool) at a maximum stroke speed of 
500 spm. The reference sensor in the upper tool was used to 
train the mSVM, since the sensor is placed in the direct force 
flux close to the forming zone, is slightly affected by super-
imposed vibrations in the system and generates high quality 
data reflecting the actual physical state of the process.

Model performance depending on sensor position 
and type

The performance of the classification model depends on the 
quality of the data set and related to this to their acquisition 
procedure (Calmano et al. 2013; Groche et al. 2019). It is 
decisive which sensor types are selected, which measuring 
method is used and which position is chosen inside the tool 
or the press. Figure 10 shows the result of the mSVM for a 
piezo electrical force washer (force washer lower tool: direct 
measurement), a piezo electrical measuring pin (piezo pin: 
indirect measurement) and a resistive strain gauge sensor 
(strain gauge punch: indirect measurement).

Considering these results qualitatively, it is shown that 
especially piezo electrical sensor types in direct and indi-
rect force flux significantly improve the performance of the 
classification model. They allow to measure dynamic effects 
without losing the information stored in the high frequency 
domain and are able to classify the wear state even with 
stroke speeds of up to 500 spm which results in high model 
accuracy as shown in Table 6.

The accuracy of the model is close to 100% over the 
entire stroke speed range for both piezo electrical sensors. 
Although both sensors have comparable accuracy, they show 
differences in the separability of their classes. However, to 
compare a piezo electrical sensor with a resistive sensor, the 
resistive sensor, which is susceptible to electrical noise, must 
be filtered. Therefore, the resistive strain gauge sensor is low 
pass filtered ( fc,opt = 7.5 kHz). The results show that this type 

no wear ( ) small wear ( ) medium wear ( ) critical wear ( )high wear ( )

(a) force washer upper tool (b) piezo pin (c) strain gauge punch ( , )

Fig. 10  Qualitative visualization of the mSVM classifying five wear states comparing piezo electrical force washer (a), piezo electrical measur-
ing pin (b) and a resistive strain gauge on the punch (c)
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of sensor can correctly detect all wear states, with a 100% 
accuracy, even at high stroke speeds. In contrast, the resistive 
sensor provides a poorer separability of the classes which 
decreases with higher stroke speed, caused by the limited 
dynamic properties and the tendency to noise.

As described by Calmano et al., in addition to the sensor 
type, sensor position also affects the quality of the acquired 
data and thus the classification performance of the mSVM 
(Calmano et al. 2013). Comparing the performance of the 
classification models for two sensors of the same type at 
different positions in the process, this hypothesis can be con-
firmed. Therefore, Fig. 11 shows the classification results for 
two low pass filtered resistive sensors (strain sensor frame 
and strain gauge punch). The strain sensor in the columns 
has a comparable accuracy of 100% to the strain gauge in the 
punch for classifying the wear states at lower stroke speeds. 
However, as the stroke speed increases, a resilient descrip-
tion of the wear states is no longer possible and the accuracy 
drops to 71% at a stroke speed of 500 spm. A similar ten-
dency can be seen in the separability, which decreases from 
114.08 to 71.75 for the strain gauge punch and even from 
100.53 to 3.24 for the strain sensor frame.

Comparing the performance of the classification models 
for two piezo electrical force washers (force washer upper 
tool and force washer lower tool) which have the same 
physical distance to the forming zone but are integrated in 
the upper and lower tool differences in the model perfor-
mance become apparent. The classification model based on 
the force washer in the upper tool shows lower deviations 
within each class, which is also reflected by the Mahalano-
bis distance. The Euclidean distance between centroid from 
class 2 and class 3 is about dE = 0.65 ± 0.05 for both models. 
In contrast to this, the Mahalanobis variant takes the vari-
ances into account and shows a difference of 13.6% averaged 
over the stroke speeds between the force sensor in the upper 
tool and lower tool. The accuracy of the model is 100% for 
both piezoelectric-type sensors over all stroke speeds (see 
Fig. 12).

Model performance depending on data 
preprocessing

In addition to the data acquisition step and the related gen-
eration of valid data sets, the preprocessing of the data plays 
an important role in the application of ML models, since 

Table 6  Influence of different 
sensor types and positions on 
accuracy to predicting wear 
states with a multiclass SVM 
and Mahalanobis distance to 
quantify the separability of class 
2 and 3

Model performance Sensortype v
0
 = 200 spm v

1
 = 300 spm v

2
 = 400 spm v

3
 = 500 spm

Accuracy �acc in % Force washer upper tool 100 100 100 100
Piezo pin 100 100 100 99
Strain gauge punch 100 100 100 100
Force washer lower tool 100 100 100 100
Strain sensor frame 100 98 88 71

d
M

 (class 2/3) Force washer upper tool 252.74 560.60 140.69 74.46
Piezo pin 225.19 306.90 77.32 78.01
Strain gauge punch 114.08 114.87 78.97 71.75
Force washer lower tool 203.65 282.63 30.96 45.36
Strain sensor frame 100.53 22.34 21.44 3.24

no wear ( ) small wear ( ) medium wear ( )

critical wear ( )high wear ( )

(a) strain gauge punch ( , ) (b) strain sensor ( , )

Fig. 11  Qualitative visualization of multiclass SVM classifying 
five wear states comparing different sensor position of strain gauge 
mounted at the punch (a) and strains sensor (b) integrated to the col-
umns of the press

no wear ( ) small wear ( ) medium wear ( )

critical wear ( )high wear ( )

(a) force washer upper tool (b) force washer lower tool

Fig. 12  Qualitative visualization of the multiclass SVM classifying 
five wear states comparing the integration of piezo electrical force 
washers in lower (a) and upper tool (b)
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time signals acquired by sensors are usually consisting of a 
signal superimposed by a noise level. The noise is character-
ized by a stochastic, unpredictable behavior of the acquired 
variable caused by electrical or external sources. Noise is a 
combination of electrical (thermal, shot, flicker, burst and 
transit-time noise) and background noise (electromagnetic 
and acoustic noise as well as mechanical vibrations) (Com-
puting & Corporation,Data Acquisition Handbook, 2004.  
2004). From the perspective of signal processing, force sig-
nals in this study are described as follows:

Fsig(t) describes a relevant part of the acquired force 
signal, which represents the physical state of the pro-
cess. The electrical noise Fn,el(t) is composed of internal, 
physical effects such as thermal or transient time noise 
and external sources like electrostatic noise (voltage is 
induced in a conductor that is exposed to a time-vary-
ing electric field) and electromagnetic noise (current is 
induced in a conductor that is exposed to a time-varying 
magnetic field). Resistance measurements in particular, (e. 
g. strain gauges) are influenced by varying voltages and 
currents caused by electrostatic and electromagnetic noise. 
In addition, the resistance is influenced by the hardware 
of the measuring chain which is influenced by the length 
of the connection cable, its shielding and insulation, the 
electrical contacting, the temperature and the integration 
process. In contrast to strain gauges, piezo electrical sen-
sors are less affected by this electrical noise. They are 
mainly effected by a drift of the signal related to a time-
dependent shift of charge in the piezo electrical crystal. In 
addition to the electrical noise, mechanically caused noise 
is superimposed on the actual force signal. It is divided 
into process noise Fn,process and press and tool noise Fn,tool . 
Process noise is related to vibrations caused by the impact 
of the punch on the sheet metal, by the material breakage, 
and the pushing and withdrawing of the punch through 
the sheet metal. This process-related noise may contain 
valuable information about the state of the process and 
is related to physical effects in the process. In contrast, 
press- and tool-related noise is caused by the static and 
dynamic effects (inertial forces resulting from the high 
accelerations of the ram) of the press and the connected 
peripherals (inertial forces and vibrations of the feed unit 
which accelerate and decelerate the sheet metal strip dur-
ing each stroke cycle). While the mechanically caused 
noise strongly depends on the dynamic of the blanking 
process and therefore is related to the stroke speed, the 
electrical noise mainly depends on the sensor type (piezo 
electrical or resistive), the measuring method (direct or 
indirect measurement) and the measuring position (dis-
tance to the forming zone). To reduce both noise effects, 

(10)F(t) = Fsig(t) + Fn, el(t) + Fn,tool + Fn,process

filter operations are a common method (Jackson, 1996). In 
order to quantify the influence of filtering and the selection 
of the filter design on the performance of the classification 
model, the time signals of a resistive sensor and a piezo 
electrical sensor are analyzed. In particular, the influence 
of a selectable design filter parameter on model perfor-
mance is demonstrated. A distinction is made between an 
optimally designed filter parameter, a poorly designed fil-
ter parameter and no filter. As a filter design, a third order 
Butterworth filter with a normalized cutoff frequency wi 
is used. The normalized cutoff frequency is calculated by 
Eq. 12 with the sampling frequency fs of 50 kHz and the 
cutoff frequency fc,i as design parameters.

However, special attention has to be paid to the selec-
tion of the designing filter parameter fc,i . For filtering the 
force signal of the resistive strain gauge sensor on the 
punch an optimal cutoff frequency fc,opt = 7.5 kHz was 
used, while the cutoff frequency for the deficient case 
fc,def = 8.5 kHz was determined based on previous investi-
gations (see Fig. 13). Comparing these filter designs, the 
optimal cutoff frequency shows a significantly better per-
formance of the model. Looking at the frequency domain 
of the strain gauge sensor distinct frequencies in the range 
from 7.8 to 8.1 kHz and low-frequencies in the range up 
to 1.2 kHz are detected. While the high frequencies are 
related to electrical noise, the lower frequencies depend 
on the static and dynamic behavior of the press and the 
physics of the process.

An optimally designed filters achieve an accuracy of the 
model up to 100% and significantly increased the separa-
bility of the classes even at strokes speeds of 500 spm. In 
contrast, the cutoff frequency of the deficient filter design is 
above the frequency range fc,def = 8.5 kHz where the electri-
cal noise is highly dissipated. Therefore, an improvement of 
the signal quality and related to this the model performance 
is not expected. Instead, the deficient filtered force signal 
remove physically relevant parts of the data and worsens the 
accuracy of the classification model to 82% even at stroke 
low stroke speeds as shown in Table 7 and qualitatively visu-
alized in Fig. 14. A similar effect can be seen in the class 
separability, which improved insignificantly with a deficient 
designing filter parameter compared to non-filter design.

Looking at the frequency domain of the force washer, 
signal frequencies of major impact are localized in a lower 
range up to 1.2 kHz (Fig. 15b). Electrical noise in a high 
frequency range, as it occurs with resistive sensors, can-
not be identified. In order to reduce the influence of these 
mechanical vibrations, the cutoff frequency is set to 0.7 kHz. 
However, selecting the cut-off frequency in this case requires 

(11)wi =
2 ⋅ fc,i

fs
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(a) (b)

Fig. 13  Visualization of the force signal by the strain gauge on the punch filtered in the time domain (a) and frequency range of the raw signal 
(b)

Table 7  Influence of different filter operations on accuracy in predicting wear states with a multiclass SVM and Mahalanobis distance to quan-
tify the separability of class 2 and 3

Model performance Sensortype v
0
 = 200 spm v

1
 = 300 spm v

2
 = 400 spm v

3
 = 500 spm

Accuracy �acc in % Strain gauge punch (no filter) 80 83 84 76
Strain gauge punch ( fc,opt = 7.5 kh) 100 100 100 100
Strain gauge punch ( fc,def = 8.5 kh) 82 86 81 97
Force washer lower tool (no filter) 100 100 100 100
Force washer lower tool ( fc,opt = 0.7 kh) 100 100 100 100
Force washer lower tool ( fc,opt = 0.3 kh) 93 100 98 91

d
M

 (class 2/3) Strain gauge punch (no filter) 5.09 9.50 5.76 12.68
Strain gauge punch ( fc,opt = 7.5 kh) 114.08 114.87 78.97 71.75
Strain gauge punch ( fc,def = 8.5 kh) 7.22 14.10 2.62 40.83
Force washer lower tool (no filter) 252.73 282.62 30.95 45.36
Force washer lower tool ( fc,opt = 0.7 kh) 348.81 254.83 389.33 81.32
Force washer lower tool ( fc,opt = 0.3 kh) 2554.83 2987.23 9931.17 186.95

no wear ( ) small wear ( ) medium wear ( ) critical wear ( )high wear ( )

(a) strain gauge punch 
(no filter)

(c) strain gauge punch 
( , = 8.5 kHz)

(b) strain gauge punch 
( , = 7.5 kHz)

Fig. 14  Qualitative visualization of the multiclass SVM classifying five wear states comparing the non-filtered force signals from strain gauge on 
the punch (a) with the optimal fc,opt (b) and deficit fc,def (c) filtered signal
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caution, since the physically relevant characteristics of the 
force signal are removed if the cutoff frequency is set to a 
value smaller or equal to 0.5 kHz. This can be seen in the 
qualitative visualization of the classification model (Fig. 16).

While the accuracy for both the unfiltered and optimally 
filtered design reaches 100%, the accuracy for the deficient 
filter design drops to 91%. In contrast to the accuracy, a 
better separability of the classes is achieved with a lower 
cutoff frequency of fc,def = 0.2 kHz (see Table 7). Due to 
mechanical vibrations in connection with a stroke-related 
time shift, the deviation of the force signals increases, which 
worsens the separability. Filtering the force signal with a 
cutoff frequency lower than 0.2 kHz reduces these devia-
tions and increases the Mahalanobis distance, especially for 
higher strokes speeds, as shown in Table 7.

Consequently, the results show that signal filtering can 
significantly improve the model quality, but the selection 
of the filter operation and design is of crucial importance. 
On the one hand, systematic investigations of the frequency 
spectrum help with the design. On the other hand, it is essen-
tial to include process knowledge in the design procedure. 

Especially, for identifying the frequency range of the force 
signal which contains relevant information, process knowl-
edge is needed. In addition, for the filter design procedure 
it could be shown that low frequencies contain important 
information for a resilient implementation of the classifica-
tion model, while high frequency ranges caused by electrical 
noise are negligible (Table 8).

Model performance depending on feature selection

In addition to data acquisition and preprocessing, the 
transformation of data has a significant influence on the 
performance of ML algorithms (Blum & Langley, 1997). 
Therefore, we aim to achieve the accuracy of an ML model 
as represented by the entire data set by selecting relevant 
features from given times series with a minimal loss of 
information while improving the computational overhead. 
In the following part, the performance of the classification 
model is evaluated by comparing the features extracted by a 
PCA and a feature engineering approach (Sect. 3.3). These 
features are composed of the two major principal axes ( f1 

(a) (b)

Fig. 15  Visualization of the force signal by the force washer in the lower tool filtered in the time domain (a) and frequency range of the raw sig-
nal (b)

no wear ( ) small wear ( ) medium wear ( ) critical wear ( )high wear ( )

(a) force washer lower tool 
(no filter)

(c) force washer lower tool 
( , = 8.5 kHz)

(b) force washer lower tool 
( , = 7.5 kHz)

Fig. 16  Qualitative visualization of the multiclass SVM classifying five wear states comparing the non-filtered force signals from force washer 
in the upper tool (a) with the optimal fc,opt (b) and deficit fc,def (c) filtered signal
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and f2 ) extracted by the PCA, and nine engineered features 
( Fi , wi and li with i ∈ {punch, push, withdraw}). In the first 
step a correlations matrix was created to remove redundant 
features. The corresponding parameters and their Pearson 
correlation coefficients were determined for N = 500 single 
strokes for each experiment and are shown in Fig. 17.

Evaluating the matrix shows a significant correlation 
between the maximal force ( Fpunch ), the length ( lpunch ) and 
the work done ( Wpunch ) in the punch-phase. As a result of 
progressive abrasive wear, the cutting edge radii ( ri ) is 
rounded, stress peaks in the forming are reduced in contrast 
to a sharp cutting edge radii and the plastic deformation 
phase is extended. Caused by this extended deformation, 
the percentage of the shear zone and the related phenomena 
increase with the length of the punch-phase (Klingenberg & 
Boer, 2008). Assuming that the progressive wear has only an 
insignificant influence on the maximal force of the punch-
phase, an extension of the length of the punch-phase leads 
to an increased amount of work in this phase. Redundancies 
between the work done and the length of the punch-phase 
are identified. In contrast, the work done in the push- and 
withdraw-phase mainly depend on the maximal force in each 
phase ( Fpush and Fwith ). Hohmann et al. prove in their work 
that progressive wear leads to increased frictional forces 
between the punch in the sheet metal and thus to higher 
maximal forces in the push- and withdraw-phase (Hohmann 
et al. 2017). Therefore, a redundancy between the maximal 
forces and the work done in both phases is detected, which 
is also confirmed by high correlation coefficients of 0.99 
for the push- and 0.97 for the withdraw-phase. The work 
performed in all three phases is redundant to the maximal 
forces ( Fpush and Fwith ) and the length of the punch-phase 
( lpunch ). This feature is negligible for the further training of 
the classification mode. Furthermore, the literature indicates 

an abrasive wear on the cutting edge marginally effects the 
maximal force in the punch-phase. In addition, previous 
investigations within the scope of this work have shown that 
a resilient identification of the start and end points as well as 
the maximum force in the punch-phase is difficult to auto-
mate due to the limited formation of this phase. Since the 
determination of the minimum force in the withdraw-phase 
is more resilient than the determination of the length of this 
phase, feature lpunch and Fwith are obtained for further investi-
gations. This selection is confirmed in the coefficients of the 
correlation matrix, which provides a moderate correlation of 
-0.83 between both features. At this point it should be men-
tioned that the correlation matrix coefficient can be used for 
an unsupervised feature selection leading to an exclusion of 
highly correlating features. However, this does not exclude 
the possibility that important information may be contained 
in two correlating features, which are crucial for the further 
identification of the wear states (Hoppe et al. 2019). Fig-
ure 18 shows the qualitative influence of different feature 
combinations on the performance of the multiclass SVM. 
The training of the model is based on (a) two major princi-
pal axes of the PCA ( f1 and f2 ), (b) two engineered features 
( lpunch and Fwith ) and a hybrid approach ( f1 and lpunch ). Force 
signals are acquired with the force washer in the upper tool.

This is shown qualitatively in the visualization of the 
classification models and quantitatively in the calculated 
Mahalanobis distance which is 35.2% higher in the hybrid 
approach compared to the isolated PCA approach and 
9.3% higher compared to the isolated engineered features 
approach. This leads to the conclusion, that feature selection 
can improve the performance of the model. The availability 
of domain knowledge and process expertise for the extrac-
tion and selection of the features, especially in the feature 
engineering approach, plays a crucial role (Table 8).

Discussion

The results demonstrate that abrasive wear states can be 
classified by a mSVM but data acquisition, data preproc-
essing and data transformation affect the performance of 
the model. Depending on these three steps as well as the 
number of strokes, the accuracy can range from 100 to 
71%. It was found that the variance within the acquired 
data sets, described by the mean standard deviation s , cor-
relates strongly with the performance of the classification 
model. Figure 19a shows the model performance as a dou-
ble logarithmic function of the mean standard deviation 
for different sensor positions and sensor types and a stroke 
rate of 300 spm. With a decreasing mean standard devia-
tion, as observed in the piezo electrical force sensors close 
to the forming zone, the accuracy of the model raises. A 
similar effect is seen for the separability represented by the 
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Fig. 17  Correlation matrix of the engineered features
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Mahalanobis distance. In addition to the sensor position and 
the sensor type, the strokes speed influences the mean stand-
ard deviation. As a result of higher stroke speeds, dynamic 
effects are superimposed on the force signal. This increases 
the average standard deviation of the time signals, regardless 
of which sensor is used or where the sensor is positioned. As 
an example of this effect, Fig. 19b shows for the strain sensor 
in the press frame the influence of the stroke speed on the 
model accuracy and separability correlated with the mean 
standard deviation as a double logarithmic plot.

From a Machine Learning point of view, a correlation 
can be established between the variance in a time signal 
and the performance of mSVM. The origin of this vari-
ance in the data set is mainly caused by the sensor type 
and the sensor position (physical distance between sensor 
and forming zone). Looking at the commonly used sensor 
types for monitoring of forming processes (piezoelectric 
and resistive force sensors), the resistive sensors in par-
ticular show a significantly higher variance in the data 
set than the piezoelectric sensors. This is mainly due to 
the fact that resistive sensors tend to produce noise. In 
this process, resistive sensors measure forces indirectly 
by a change in resistance caused by an elongation of the 
measuring grid. This change in resistance is not only 

determined by the elastic deformation of the measuring 
grid, but also by electrical noise caused by the electrical 
contacts, the length of the cable and the mounting process. 
In addition, resistive sensors are limited in representing 
high frequency ranges due to their mechanical design and 
inertia. In particular, using this sensor type for acquiring 
forces in a blanking process results in a loss of physical 
valuable information, as the resistive sensor is not capable 
of representing dynamic effects.

As mentioned in the "Data-driven monitoring of blanking 
processes" section, blanking processes run at over 1000 spm. 
Impacts are triggered when the punch hits the sheet metal 
and the elastic energy stored in the system is released 
abruptly. This causes oscillations in the process which, due 
to the Dirac-shaped impulse, distribute the physical infor-
mation in the measured force signals over a wide frequency 
range. This effect is amplified as the stroke speed increases. 
In contrast, piezo electrical sensors are able to improve the 
representation of dynamic effects during blanking due to 
their higher stiffness. In addition, they tend to be less sus-
ceptible to noise due to their compact design (protected from 
environmental influences such as vibrations, heat transfer, 
mechanical shocks, etc.) and their good electrical shield-
ing, including the wires. Furthermore, compared to resistive 

no wear ( ) small wear ( ) medium wear ( ) critical wear ( )high wear ( )

(a) force washer upper tool 
( and )

(c) force washer upper tool 
( and )

(b) force washer upper tool 
( and )

Fig. 18  Qualitative visualization of the multiclass SVM classifying five wear states comparing the feature selection approaches based on PCA 
features (a), engineered features (b) and a hybrid approach (c)

Table 8  Influence of different feature selections approaches on the accuracy in predicting wear states with a multiclass SVM and Mahalanobis 
distance to quantify the separability of class 2 and 3

Model performance Sensortype v
0
 = 200 spm v

1
 = 300 spm v

2
 = 400 spm v

3
 = 500 spm

Accuracy �acc in % Force washer upper tool ( f1 and f1) 100 100 100 100
Force washer upper tool ( lpunch and Fwith) 100 100 100 100
Force washer upper tool ( f1 and lpunch) 100 100 100 100

d
M

 (class 2/3) Force washer upper tool ( f1 and f1) 203.65 560.60 140.69 74.46
Force washer upper tool ( lpunch and Fwith) 239.72 295.62 197.62 470.93
Force washer upper tool ( f1 and lpunch) 290.04 102.32 233.01 1592.21
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sensors, piezoelectric sensors are less sensitive to temporal 
and spatial self-heating effects and the associated thermal 
noise.

In addition to the sensor type, it was shown that the 
performance of the mSVM is influenced by the physical 
distance of the sensor from the actual forming zone and 
its actual position in the tool. Depending on the distance 
between the sensor and the forming zone, the acquired 
force signal is influenced by the static and dynamic behav-
ior of the press. The high accelerations generate inertial 
forces in the press frame, which have to be compensated by 
the mass balance of the press. Especially the mass balance 
system of the Bruderer press (BSTA 810) is designed for 
large tools ( < 250 kg) causing unbalanced inertial forces 
using the experimental tool ( ∼ 100 kg). As a result, an 
inertial force opposite to the movement of the ram is gen-
erated during the downward movement of the ram, which 

is superimposed on the signal of the blanking process. 
These inertial forces are especially noticeable in the strain 
sensor of the press frame. Figure 20 shows a comparison 
of the time series of the force sensor in the press frame 
(strain sensor frame) and in the upper tool (force washer 
upper tool).

From a Machine Learning perspective, the data set is 
enriched with information about the dynamic behavior of 
the press, which is not useful for predicting abrasive wear 
states. In contrast, even a small change in the data set by 
adding or removing data points can significantly influence 
the results of ML models (Nguyen et al. 2015). This effect 
is also seen in the positioning of sensors in the blanking 
tool. With increasing distance to the forming zone, more and 
more unwanted information of the overall system is super-
imposed on the physical information of the blanking process 
(e. g. inertial forces). Not only the physical distance to the 
forming zone but also the position inside the tool plays a 
crucial role for the performance of an ML model. Looking at 
the force washers (force washer upper tool and force washer 
lower tool) in Fig. 4, it is evident that the physical distance to 
the forming zone is unchanged, while the position in the tool 
is different. Nevertheless, the mean standard deviation over 
the entire stroke rate range for the force washer in the lower 
tool is approximately 62% higher than the mean standard 
deviation of the force washer in the upper tool, as shown 
in Table 5. This is caused by the uneven distribution of the 
masses between the force washer and the forming zone. The 
mass of the lower tool components ml (adapter plate, col-
umns and die holder) is greater than the mass of the upper 
tool components mu (adapter plate and punch holder), result-
ing in a mass ratio of ml/mu~10. Due to the greater mass 
in the lower tool, vibrations caused by the impact of the 
punch on the sheet metal and the material breakage increase 
dynamic forces as shown in Fig. 20.
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Fig. 19  Dependency of the model performance on the mean standard 
deviation for all sensors at 200 spm (a) and the correlation between 
stroke speed and model accuracy depending on the mean standard 
deviation (b)

Fig. 20  Comparing force signal of piezo-electrical force washer inte-
grated to the upper and lower tool as well as the frame sensor in the 
press frame at a stroke speed of 300 spm and an unworn punch ( r0)
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In summary, these findings show that the variance in a 
time signal depends on the sensor type and its position-
ing in the tool and correlates with the performance of 
ML models. In order to generate a high-performance ML 
model, the variance in the input data has to be minimized. 
In the case of blanking, dynamic effects caused by the 
high stroke speeds in combination with electrical noise 
and physically induced vibrations are the key factors influ-
encing this variance. In order to minimize this variance in 
the signal, there are two ways of adjusting it. Firstly, the 
sensor position and type must be explicitly designed for 
the application in a blanking process to directly minimize 
the variance in the input data. It could therefore be shown 
that piezo electrical force washers near the forming zone 
in the upper tool are suitable to monitor the wear state in 
order to improve the quality of the input variables and thus 
the performance of the mSVM. Secondly, the variance in 
the input data can be indirectly affected by the step of data 
preprocessing and data transformation. Filtering offers the 
possibility to remove undesired characteristics from the 
force signal, but on the other hand it bears the risk of los-
ing physically relevant information. Therefore, it is cru-
cial to design filter operations based on expert knowledge, 
process knowledge and empirical experience in a way that 
unwanted properties are removed from the signal without 
losing physically relevant signal components (see “Model 
performance depending on data preprocessing” section).

Also the feature selection procedure can improve the 
model performance. Thereby it is necessary to select fea-
tures that are robust against deviations in the time signal. 
As the results show, time domain features such as extreme 
values, first to fourth order statistical moments, and engi-
neered features are affected by the variance in the signal. 
These findings are confirmed by Fig. 18, which shows a 
small value for the Mahalanobis distance for separating 
classes using only the engineered feature length of punch-
phase lp,i and the work done in the withdraw-phase Ww,i . 
In particular, such features are very sensitive to shifts on 
the time axis. Even an offset of a few samples, caused 
by vibrations or uncertainties in the measurement chain 
(shift of the starting point of the measurement) lead to 
significant differences in the value of the feature. Figure 21 
shows the deviation of the engineered feature lp,i depend-
ing on the start end point of the punch phase. Even if the 
end point varies around ± 2 samples, the length of the 
punch varies by ± 0.05 mm. A similar effect can be seen 
when using PCA features that do not distinguish between 
variance due to measured values (e. g. electrical noise) 
and variance due to real underlying signal variations. Even 
if an estimate of measurement variance is available, this 
information is not used in the construction of eigenvec-
tors, e.g. by weighting noisy data. Therefore, selecting 
robust features and combining them, as shown in “Model 

performance depending on feature selection” section, can 
improve the performance of ML models.

Summary and conclusion

This study examines the influence of data acquisition, 
preprocessing and transformation on the performance of 
a mSVM to classify abrasive wear states during blanking 
based on force signals. The performance of the model was 
quantitatively evaluated based on the model accuracy and 
the separability of the classes. Especially the extent of vari-
ance in the time signals significantly influences the perfor-
mance of the classification model. This variance depends 
on the sensor types and positions as well as the measur-
ing method (direct measurement vs. indirect measurement) 
and is improved by data preprocessing as well as a suitable 
extraction and selection of features. Therefore, the acquisi-
tion of a valid and trustworthy data set combined with a data 
preprocessing and transformation assisted by domain knowl-
edge improves the successful implementation of AI projects.

Furthermore, this study shows for the first time a success-
ful procedure predicting wear states during blanking even at 
high stroke speeds considering industrial conditions. Espe-
cially the use of piezo electrical sensors in the direct force 
flux close to the forming zone provides the suitable results 
from a technical and economical point of view. In combi-
nation, a following preprocessing step by filtering the data 
considering domain knowledge by designing the filter opera-
tion further improves the model performance. Also taking 
into account the data transformation can improve the model 
performance, especially the combination of different param-
eters (PCA features and engineered features) and selection 
of an optimal feature space. The methods investigated so far 
are limited to domains like machining or process engineer-
ing considering linear transformations in the time domain. 

l1

l2

l3

stroke length Δ sample
1 1.504 mm 2
2 1.564 mm 0
3 1.613 mm 3

Fig. 21  Influence of small shifts on the time axis on the value of the 
engineered feature length of the punch-phase lp,i
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Since blanking is a nonlinear and highly dynamic process, 
the extension of extraction methods to nonlinear features 
from the frequency or time–frequency domain is necessary. 
In addition to force signals, further process variables (e.g. 
acceleration, AE, acoustic emissions, etc.) and sensor types 
have to be investigated with respect to their suitability for 
the identification of process states during blanking. Further-
more, the transferability of the quantified influences of data 
acquisition, preprocessing and transformation on the perfor-
mance of ML algorithm to other manufacturing processes 
should be demonstrated.
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