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Abstract
In Industry 4.0, smart manufacturing is facing its next stage, cybermanufacturing, founded upon advanced communication,
computation, and control infrastructure. Cybermanufacturing will unleash the potential of multi-modal manufacturing data,
and provide a new perspective called computation service, as a part of service-oriented architecture (SOA), where on-demand
computation requests throughout manufacturing operations are seamlessly satisfied by data analytics and machine learning.
However, the complexity of information technology infrastructure leads to fundamental challenges in modeling and analysis
under cybermanufacturing, ranging from information-poor datasets to a lack of reproducibility of analytical studies. Neverthe-
less, existing reviews have focused on the overall architecture of cybermanufacturing/SOA or its technical components (e.g.,
communication protocol), rather than the potential bottleneck of computation service with respect to modeling and analysis.
In this paper, we review the fundamental challenges with respect to modeling and analysis in cybermanufacturing. Then,
we introduce the existing efforts in computation pipeline recommendation, which aims at identifying an optimal sequence
of method options for data analytics/machine learning without time-consuming trial-and-error. We envision computation
pipeline recommendation as a promising research field to address the fundamental challenges in cybermanufacturing. We also
expect that computation pipeline recommendation can be a driving force to flexible and resilient manufacturing operations in
the post-COVID-19 industry.

Keywords Computation pipelines · Cybermanufacturing · Industry 4.0 · Machine learning · Manufacturing modeling and
analysis

Introduction

In the era of Industry 4.0, advanced communication, com-
putation, and control infrastructures are integrated into
cyber-physical systems (CPS) incorporating a network of
multiple manufacturing systems. Such a CPS opens a new
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paradigm of smart manufacturing, called cybermanufactur-
ing. Conventional smart manufacturing has relied on tradi-
tional data-driven decision-making methods (e.g., statistical
process control) to improve the performance of individual
manufacturing systems. On the other hand, the next smart
manufacturing, cybermanufacturing, is founded upon a CPS
that constitutes a physical entity (e.g., physical equipment
with sensor systems) and its corresponding cyber entity (e.g.,
a computer simulation model of the physical system, also
referred to as digital twin (Kendrik et al. 2020)). Thus, the
concept of digital twins can be closely integrated at all scales
and levels (i.e., from individual equipment level to systems
and networks of equipment) in the context of manufactur-
ing operations, while the application of the general concept
of digital twin is not restricted to cybermanufacturing. In
cybermanufacturing, the behavior of physical entities can be
timely sensed, predicted, and controlled via cyber entities.

Cybermanufacturing is the next stage of smart manufac-
turing, and it is a significant leap from conventional smart
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manufacturing. Specifically, cybermanufacturing allows record-
ing and registering all manufacturing events to improve
the availability of manufacturing data, as well as provides
ubiquitous computation resources and autonomous robotics
to improve manufacturing efficiency and flexibility (Chen
et al. 2018). With state-of-the-art machine learning meth-
ods, cybermanufacturing is expected to unleash the power of
multi-modal manufacturing data, thus enhancing manufac-
turing efficiency, cost reduction, product quality, flexibility,
and domain knowledge discovery. For example, case studies
report on the applications of cybermanufacturing to innovate
important sectors ofmanufacturing, includingmanufacturing
logistics (Strandhagen et al. 2017), anomaly detection (Sto-
janovic et al. 2016; Pagani et al. 2020; Yan et al. 2020),
and quality improvement (Oliff and Liu 2017). In addi-
tion, not only large manufacturing corporations like Stanley
Black & Decker (Cisco 2019) and Siemens (Siemans 2019),
but also small/medium-sized companies can benefit from
cybermanufacturing. For example, a recent study has demon-
strated the feasibility of adopting cybermanufacturing in
small/medium-sized springmanufacturing companies by uti-
lizing affordable sensor systems (Kuo et al. 2017). In other
words, the transition into cybermanufacturing is not only
aboutmaintaining competitiveness, but also becoming essen-
tial to survival in Industry 4.0.

In the meantime, disruptive events, such as the COVID-
19 pandemic, are calling for a more resilient manufacturing
industry from unexpected downs of facilities, supply chains,
and human resources (Loayza and Pennings 2020; Ivanov
and Dolgui 2020). This accelerates the adoption of data-
driven decision-making methods in manufacturing, so that
the majority of manufacturing decisions in production, sup-
ply chain, quality engineering, and reliability engineering
will be automatically made. This will allow the workforce
to focus more on the insight-needed and situation-dependent
tasks, such as business planning and new process/product
development, rather than the basic and repetitive tasks (Chen
and Jin 2017). In this direction, the concept of computation
services in manufacturing has been proposed (Chen and Jin
2021), to describe a situation where manufacturing data is
automatically collected and processed in ubiquitous compu-
tation units, such as the Cloud and the Fog nodes (Chen et al.
2018; Zhang et al. 2019). The goal is to provide real-time or
online computation results andmeet on-demand computation
requests from manufacturing processes, systems, and users
for decision-making. Thus, minimal labor-intensive training
and tuning works are needed to effectively use data analytics
andmachine learningmethods in such a computation service.
In this paper, we focus on the “modeling and analysis” type
of problems in manufacturing (Van Luttervelt et al. 1998;
Shi 2006), which has served as the foundation for process
monitoring, root-cause diagnosis, and control (Monostori
and Prohaszka 1993; Duffie and Malmberg 1987; Prabhu

and Duffie 1995). Specifically, we review the modeling and
analysis methods in smart manufacturing, and discuss the
fundamental challenges to use those methods in cybermanu-
facturing. Other important research topics, such as sensor
systems, computation infrastructure, production planning,
and control/robotics, will not be discussed in this paper. For
more detailed information about the advancement of sen-
sor, robotics technologies, and human-machine interaction,
the readers are referred to the recent reviews (Schütze et al.
2018; Bahrin et al. 2016; Kendrik et al. 2020; Cadavid et al.
2020; Derigent et al. 2020; Ansari et al. 2018; Paelke et al.
2020).

To streamline computation service in cybermanufactur-
ing, it is necessary to identify a proper configuration of data
analytics and/or machine learning methods providing the
best computation performances for a contextualized compu-
tation task, such as variation analysis and anomaly detection.
Here, one effective configuration is called a “computation
pipeline”, which is a sequence of method options involving
data collection, data preprocessing, data analytics methods,
etc. (Sparks et al. 2017; Chen and Jin 2018; Chen and Jin
2021;Chen et al. 2021).Adopting the concept of computation
pipeline can comprehensively show how the data are sourced
and processed to generate computation outcomes (Chen and
Jin 2018). In cybermanufacturing, efficient identification of
a proper computation pipeline under a given contextualized
computation task ensures the resiliency of cybermanufac-
turing by improving the flexibility of the configuration of
machine learning methods. In this paper, we will explore the
recent advancement in selecting the computation pipelines,
especially focusing on computation pipeline recommenda-
tion.

The remainder of this work is organized as follows. Sec-
tion 2 provides an overview of smart manufacturing with
respect to modeling and analysis. Section 3 focuses on a
systematic review of the challenges of modeling and analy-
sis in cybermanufacturing. Then, we review the computation
services and computation pipelines as a promising research
area in cybermanufacturing in Sect. 4. Lastly, we summa-
rize the contribution of this paper with some discussions in
Sect. 5. We envision that active investigation of computation
pipeline selection/recommendation will catalyze the adop-
tion of cybermanufacturing by providing rapid and effective
decision-making in the post-COVID-19 industry.

Revisiting smart manufacturing: a modeling
and analysis perspective

The third industrial revolution involved the use of simple
embedded systems, such as sensors and programmable logic
controllers to achieve an unprecedented level of automa-
tion in manufacturing. With the extensive use of embedded
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Fig. 1 The progression of
modeling and analysis methods
in the manufacturing industry

systems in the manufacturing industry, the third industrial
revolution has significantly improved the throughput, effi-
ciency, and product quality in the entire manufacturing
industry, while considerably reducing human labor. This
innovation opened the era of “smart manufacturing”, which
is capable of utilizing the sensor data to enable data-driven
decision-making (e.g., variation analysis and anomaly detec-
tion) and then precisely controlling the equipment with
numerical controllers (Kenett et al. 2019). However, smart
manufacturing has experienced a stagnant period due to its
fundamental limitations, which calls for the transition to its
next stage: cybermanufacturing.

In the rest of this section, we revisit the progression
of modeling and analysis under smart manufacturing in
Sect. 2.1. Then, we review the limitation of conventional
smart manufacturing, and the advancement of enabling
technologies that stimulates the transition into cybermanu-
facturing in Sect. 2.2.

Progression of modeling and analysis in
conventional smart manufacturing

In themanufacturing industry, modeling and analysis involve
quantifying the relationship between process variables and
manufacturing performance variables (e.g., product quality)
as well as the inter-relationships among process variables
for accurate prediction of the results of manufacturing oper-
ations (Van Luttervelt et al. 1998). Modeling and analysis
play the most important role in manufacturing, by providing
the foundation for process monitoring, root-cause diagno-
sis, and control (Monostori and Prohaszka 1993; Duffie
and Malmberg 1987; Prabhu and Duffie 1995). The mod-
eling and analysis methods in manufacturing have evolved
in accordance with the advancement of domain knowledge
and technologies. Figure 1 shows the progression of model-
ing and analysis methods in the manufacturing industry.

Motivated by manufacturing modeling needs, first prin-
ciple modeling have been firstly developed for modeling
and analysis, based on physical principles in Thermodynam-
ics, Fluid Mechanics, etc. This approach involves deriving
exact solutions for ordinary/partial differential equations
(ODE/PDEs) (e.g., Navier–Stokes equations) or solving an

approximation of ODE/PDEs via numerical methods (e.g.,
finite element analysis, FEA) for efficiency (Meguid et al.
1999; Roberts et al. 2009; Wen et al. 2018). However, first
principle modeling is limited when there is a significant gap
between the assumption of physical principles (e.g., ideal
boundary conditions) and the actual manufacturing condi-
tion. Therefore, the statistical design of experiments (DOE)
became an active research area for modeling and analysis in
manufacturing.

Originated from the design and analysis of agriculture
experiments (Fisher 1919), DOE has been widely applied to
manufacturing applications and computer simulations (Box
et al. 2005;Wu andHamada 2011; Santner et al. 2003;Kenett
et al. 2013). The design and analysis of physical experi-
ments provide valuable information about the manufacturing
process under controllable settings. While the design and
analysis of computer experiments can seek information on
the process when the physical experiments are too costly to
even impossible to conduct. Founded upon DOE, computer
model calibration has been advanced (Kennedy andO’Hagan
2001; Oakley and O’Hagan 2002; Higdon et al. 2008), such
that first principle models can be calibrated with the obser-
vational process data to provide more accurate results. In
addition, DOE has also contributed to modeling and analy-
sis via (1) variable screening, (2) treatment comparison, (3)
uncertainty quantification, (4) system optimization, and (5)
system robustness (Wu and Hamada 2011).

In the last few decades, the paradigm of smart manu-
facturing has significantly advanced sensing technologies,
which allows the incorporation of in situ process variables
in modeling and analysis. This advancement has enabled
compensation of modeling and analysis methods based on
in situ process data to improve product quality, efficiency, as
well as the automation of manufacturing process. An exam-
ple includes the compensation of machine tool positioning
error based on the in situ sensor data from multiple thermal
sensors (Yang et al. 1999; Yang and Ni 2005). In the mean-
time, the advancement of sensing technology also provides
a data-rich environment, where a large amount of data can
be collected from heterogeneous manufacturing systems in
multiple modalities. Specifically, the manufacturing indus-
try is known to generate more data than any other industries,
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thus efficiently utilizing the data has become one of the most
important factors to be successful in themanufacturing indus-
try (Hartmann et al. 2015).

There are two promising directions for utilizing manu-
facturing data: data fusion and machine learning methods.
Data fusion refers to the methods of integrating different
models and data sources (e.g., first principle model and data-
driven model) (Zhao et al. 2011) or different types of data
sets (e.g. observational data and DOE data) (Jin and Deng
2015; Dalla Valle and Kenett 2018). In the manufacturing
industry, data fusion has demonstrated its significant advan-
tages inmodeling and analysis by utilizing datawith different
sources, formats, or distributions (Zhao et al. 2011; Jin and
Deng 2015; Deng and Jin 2015; Sun et al. 2017). On the
other hand, machine learning refers to the methods of build-
ing a mathematical model based on data, such that the model
can make predictions or decisions without being explic-
itly programmed to do so. Given abundant data, machine
learningmethods have shown superior performances inmod-
eling complex manufacturing processes in the past few
years. Recently, with the advancement of computation infras-
tructure and increased availability of manufacturing data,
machine learning and artificial intelligence (AI) algorithms,
such as deep learning, are actively adopted in the manu-
facturing industry (Wang et al. 2018a). The most notable
feature of deep learning is that its multiple hidden layers
allow learning important features purely from the complex
manufacturing data (e.g., image or temporal data), without
expert domain knowledge. For example, the convolutional
neural network (CNN) and its variants, originally designed
for image analysis, are well suited for the analysis of image
data frommanufacturing process. The CNN has been widely
adopted for product quality inspection and fault assessment
in manufacturing process (Park et al. 2016; Weimer et al.
2016). Another example is recurrent neural network (RNN)
and its variants, originally designed for the analysis of tempo-
ral behavior, are suitable for the predictive analysis based on
historical records. Therefore, RNN has been widely adopted
for prognosis in manufacturing process (Malhi et al. 2011;
Zhao et al. 2018). In the meantime, a known limitation of
such AL algorithms is that they are mostly black-box mod-
els in nature with highly nonlinear model structure, thus
not interpretable to human (Carvalho et al. 2019). Recent
trends in machine learning community investigate model
interpretability to improve the black-box models, such as
the works on explainable machine learning (XAI) (Arrieta
et al. 2020) and knowledge-based artificial neural network
(KBANN) (Coatanéa et al. 2018). Such advancements are
promoting a trend to develop machine learning methods for
modeling and analysis in manufacturing (Dagli 2012). In
this context, data fusion and machine learning methods are
expected to play crucial roles in cybermanufacturing.

Transition into cybermanufacturing

Regardless of the success of smart manufacturing for
decades, the fundamental limitations of conventional smart
manufacturing have been proposed as follows. First, the scal-
ability of the data fusion and machine learning methods is
limited, as the manufacturing systems and cyber resources
(e.g., computation resource, data storage) are not connected
to each other. In addition, the manufacturing systems are
not operated in a synergistic manner nor jointly using the
data collected from different manufacturing systems. Sec-
ond, conventional smart manufacturing cannot fully take
advantage of state-of-the-art machine learning models nor
use the potential of multi-modal manufacturing data, as the
computation capability of simple embedded systems is lim-
ited. While utilizing external computation resources (i.e.,
Cloud computing service) can be an option to alleviate this
issue, it cannot be a reliable solution since its reliability
is highly affected by network conditions. This limits the
efficiency and reliability ofmodeling and analysis under con-
ventional smart manufacturing, especially where the given
contextualized computation task is computationally demand-
ing and/or requires responsive and reliable decision making.
Third, the flexibility (i.e., the ability for re-configuration) of
the entire system is limited, as conventional smart manufac-
turing systems typically assume limited flexibility in terms
of its operation (e.g., production plan, facility layout, etc.).
This requires extensive cost (i.e., additional human labor,
downtime, and considerable lead time to stabilize the new
configuration) when an adjustment or variant management is
required due to disruptive events. In this context, there has
been a pressing need to innovate smart manufacturing via
enhanced communication, computation, and control infras-
tructure. In recent years, CPS has been actively adopted in the
manufacturing industry to innovate important sectors ofman-
ufacturing (e.g., manufacturing logistics (Strandhagen et al.
2017), anomaly detection (Stojanovic et al. 2016; Pagani
et al. 2020; Yan et al. 2020), and quality improvement (Oliff
and Liu 2017)) aiming at addressing the aforementioned
limitations (Tao et al. 2019). By incorporating CPS, cyber-
manufacturing is expected to enhance intelligent production
planning, predictivemaintenance, flexible/autonomousman-
ufacturing process, and human-machine integration (Jeschke
et al. 2017). There are three enabling technologies towards
cybermanufacturing to form the infrastructure to support the
future generation of machine learning and computation in
manufacturing (Gorecky et al. 2014; Xiong et al. 2015; Tao
et al. 2019; Jaloudi 2019).

Communication Infrastructure There have been two
important advancements in communication infrastructure.
First, the advancement of wireless communication technolo-
gies, such as 5G and Wi-Fi 6, enables a seamless connection
among manufacturing systems, which allows efficient data
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Fig. 2 An overview of the
challenges of modeling and
analysis in cybermanufacturing

collection, exchange, and analysis to improve efficiency
and productivity in a synergistic manner (Cheng et al.
2018). Second, the advancement of standardized, open, and
manufacturer-independent communication protocols, such
as Message Queuing Telemetry Transport (MQTT), Open
Platform Communications Unified Architecture (OPC UA),
and Data Distribution Service (DDS), improves scalabil-
ity and interoperability under cybermanufacturing (Profanter
et al. 2019). Coupled with Time Sensitive Networking (TSN)
standard, the protocols will allow deterministic real-time
machine tomachine communicationswith low latency,which
is one of the most important features of cybermanufactur-
ing (Arestova et al. 2021).

Computation Infrastructure There have been two impor-
tant advancements in computation infrastructure. First, the
capability of computation resources (e.g., graphics process-
ing unit (GPU) and tensor processing unit (TPU)) have
been significantly improved to afford computation-intensive
tasks (e.g., analyzing video streams for inspection). Second,
combined with communication infrastructure, such com-
putation resources become ubiquitous, thus accessible as
cloud node (high performance, but high latency due to
remote connection) as well as Edge or Fog nodes (low
performance, but low latency due to proximity) via the
network.

Control Infrastructure There have been two important
advancements in control infrastructure. First, the advance-
ment of autonomous robotic systems (e.g., autonomous
mobile robots (AMR) (Fragapane et al. 2020) and automated
guided vehicles (AGV) (Mehami et al. 2018)) enhances the
flexibility of production to respond to dynamic markets.
Second, the advancement of human-machine integration
technologies (e.g., exoskeletons (Huysamen et al. 2018)
and augmented reality (Paelke 2014)) allows efficient col-
laboration between humans and machines to achieve high
productivity as well as responsive decision-making.

Challenges of modeling and analysis in
cybermanufacturing

Cybermanufacturing with advanced communication, com-
putation, and control infrastructures is expected to enhance
product quality/reliability, product realization efficiency, per-
sonalization, and domain knowledge discovery. However,
cybermanufacturing faces several challenges of modeling
and analysis with respect to machine learning and compu-
tation. Figure 2 shows an overview of the challenges.

In this section, we review five important challenges of
modeling and analysis in cybermanufacturing: information-
poor datasets, computation complexity, incomplete engineer-
ing knowledge, a lack of systematic understanding of the
borders among different machine learning methods, and a
lack of reproducibility.

Information-poor datasets

In this section, we make the distinction between data quality
and information quality. Data quality is an intrinsic feature
of the collected data. Information quality reflects the analysis
and management of its outcomes, conditioned on the goals
of the analysis. Data quality has been recognized as a serious
challenge by statisticians and data analysts, since almost all
data requires some pre-processing (e.g., filtering or clean-
ing) before it can be useful for a certain type of modeling
and analysis via the transition to information (Kenett and
Shmueli 2016). In that transition, many additional dimen-
sions need to be considered in order to ensure information
quality. To evaluate data quality, several assessment frame-
works have been proposed, e.g.Wang et al. (1995). To ensure
information quality, a framework based on four compo-
nents and eight dimensions has been proposed in Kenett and
Shmueli (2016), which is called InfoQ. The application of
InfoQ in the context of Industry 4.0 was reviewed in (Kenett
et al. 2018). In the InfoQ framework, information quality
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is defined as the utility, U , in applying a method of analy-
sis, f , to a data set, X , conditioned on the analysis goal, i.e.,
I n f oQ(U , f , X , g) = U ( f (X |g)). To assess InfoQ, the fol-
lowing eight dimensions are considered: 1) Data Resolution,
2) Data Structure, 3) Data Integration, 4) Temporal Rele-
vance, 5) Chronology of Data and Goal, 6) Generalizability,
7) Operationalization and 8) Communication. Specifically,
each of the eight dimensions is quantified with respect to
each of the components U , f , X , and g by answering a set
of relevant questions, and the then components are weighted
to derive InfoQ value. For more details on the calculation of
InfoQ in a practical setting, the readers are referred to the
literature (Reis and Kenett 2018), and JMP (Sall et al. 2017)
which is a suite of computer programs for statistical analysis
providing an InfoQ add-on (Kenett and Shmueli 2016) to
calculate InfoQ.

These frameworks provide important criteria to evaluate
data and information quality so that one can quantitatively
and/or qualitatively assess the data and information quality
conforming to a specific contextualized computation task. In
the era of Industry 4.0, the data quality issue is much more
demanding than ever before, since modern sensing systems
are capable of collecting an enormous amount of data over a
long period of time from distributed heterogeneousmanufac-
turing systems (Cai and Zhu 2015; Luthra andMangla 2018).
While such a sensing system can collect a massive amount
of data for machine learning, it may also include a lot of
poorly integrated or redundant information which results in
so-called “information-poor” datasets.

Information-poor datasets lead to the following limitations
in cybermanufacturing (Cai and Zhu 2015; Li et al. 2016; Dai
et al. 2020; Ismail et al. 2019). First, machine learning meth-
ods may be misled by the redundant information (i.e., low
signal-to-noise ratio),which significantly limits the effective-
ness and efficiency of manufacturing modeling and analysis.
Moreover, due to the tremendous size of datasets, it is diffi-
cult to assess the data quality in a reasonable amount of time.
Second, since cybermanufacturing involves the collection of
data from heterogeneous manufacturing systems, it brings a
wide variety of data types and heterogeneous data structures.
This leads to unbalanced data, thus makes it difficult to inte-
grate data for efficient manufacturing modeling and analysis.
Lastly, in the era of Industry 4.0, a single type of data involves
multiple contextualized computation tasks. For example, the
data related to equipment (e.g., equipment vibration) may be
used for fault diagnosis, preventive maintenance scheduling,
and quality prediction at the same time. However, as infor-
mation quality depends on the objective of a contextualized
computation task, a single dataset may or may not conform
to the information quality standards required in the multiple
contextualized computation tasks. This makes it challenging
to ensure the information quality from a dataset.

Computation complexity

Cybermanufacturing focuses on the convergence of the phys-
ical entities (e.g., manufacturing equipment) and the cyber
entities (e.g., simulated equipment), such that the dynamic
changes of the physical entities can be predicted and analyzed
through the corresponding cyber entities (Qi and Tao 2018).
Therefore, the existing efforts aimed at achieving realistic
cyber entities via accurate computer simulation models and
machine learning methods (Qi and Tao 2018; Störmer et al.
2018). An example, in the context of decision tree, predic-
tive analytics is the work of Ben-Gal et al. (2014). In that
paper, the authors presented the dual information distance
(DID) method, which selects features by considering both
immediate contributions to the classification as well as their
future potential effects. Specifically, the DID method con-
structs classification trees by finding the shortest paths over
a graph of partitions that are defined by the selected features.
The authors demonstrated that the method takes into account
both the orthogonality between the selected partitions as
well as the reduction of uncertainty on the class partition,
such that it outperforms popular classifiers in terms of aver-
age depth and classification accuracy. However, computation
complexity is becoming one of themost challenging issues in
realizing realistic cyber entities. First, high-fidelity computer
simulations, which enable accurate prediction of the behav-
ior of physical entities via the cyber entities, are typically
too time-consuming. This issue becomes more challenging
when the manufacturing process involves computationally-
intensive multiphysics computer simulations (Dbouk 2017).
For example, recent work indicates that a single run of com-
puter simulation for the fused deposition modeling process
takes more than 20 hours (Li et al. 2018), which could result
in a significant delay in updating the cyber entities. Second,
as the advancement of sensing and communication systems
enables the collection of enormous data from distributed
manufacturing systems, machine learning methods to build
the cyber entities require significantly higher computation
cost and/or communication bandwidth across cybermanu-
facturing infrastructure.

The issue of computation complexity leads to the follow-
ing limitations in cybermanufacturing (Singh et al. 2018;
Modoni et al. 2019; Bevilacqua et al. 2020; Rasheed et al.
2020). First, computation complexity involving modeling
complex behaviors of heterogeneous manufacturing systems
and their interactions delays themanufacturingmodeling and
analysis for personalized demands, which limits the time-
liness of personalization. This is an important issue, since
cybermanufacturing aims at achieving efficient personaliza-
tion of products by utilizing heterogeneous manufacturing
systems connected. Second, computational complexity also
affects the ability to generate data quality (Kenett and
Shmueli 2016). Insufficient storage or computation power to
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handle data with adequate resolution can negatively impact
the delivery of outputs from analytical work to the right per-
sons, in the right way, at the right time, thereby reducing
information quality.

Incomplete engineering knowledge

Manufacturing processes involve complex physical mecha-
nisms. Therefore, underlying engineering knowledge, such
as cause-effect relationships, first principle models, and
computer simulation models (e.g., finite element analysis,
FEA) and design rules, may be incomplete. Here, incom-
plete knowledge can be due to 1) incomplete understanding
of the underlying physical mechanism (e.g., first principle
model, material properties), 2) incomplete information about
model parameters, and 3) stochastic behavior or uncertain-
ties associated with the system or numerical algorithms. To
address the issue, computer model calibration (Kennedy and
O’Hagan 2001; Higdon et al. 2008, 2013; Wong et al. 2017)
has been continuously studied to compensate the incomplete
knowledge with observational data, and design for varia-
tion (Reinman et al. 2012) has been studied to reduce the
variation of products under the incomplete knowledge and
uncertainties. However, in the era of Industry 4.0, it is becom-
ing more challenging to address the issue for the following
reasons. First, while the core of cybermanufacturing is to take
advantage of multi-modal manufacturing data, the data can
mislead the decision-making processes if incomplete knowl-
edge (e.g., invalid assumption in modeling a manufacturing
process) involves the interpretation of the data. Second, since
the existing efforts typically assume a single or only a few
manufacturing systems (Feng et al. 2017), existing computer
experimental design, modeling and calibration are not easily
scalable to the scenario where a lot of heterogeneous manu-
facturing systems connected in cybermanufacturing. In these
cases, the dependability and effectiveness of cybermanufac-
turing may be questioned, especially in case a delicate and
complex situation requires decision-making in a real-time
manner (Broy et al. 2012). These issues are more common
to the newly introduced additive manufacturing (Babu and
Goodridge 2015; Yang et al. 2017; Dilberoglu et al. 2017;
Jared et al. 2017; Li et al. 2018; Mahmoudi et al. 2018; Sab-
baghi et al. 2018; Kenett et al. 2019).

In summary, incomplete engineering knowledge leads
to limitations in cybermanufacturing. First, the manufac-
turing design process becomes inefficient when underlying
engineering knowledge is incomplete. Specifically, it has
been speculated that 75% of the cost involving product
development is committed early in the engineering design
process when the knowledge of the product is unclear and/or
incomplete (Chandrasegaran et al. 2013). Second, when the
computer simulation or data-drivenmodels for amanufactur-
ing process are limited in scope, the models cannot provide

adequate predictions for prognostics and health management
in cybermanufacturing (Weiss et al. 2015). This can result in
inefficient planning, maintenance and logistics due to the
inaccurate prediction of equipment status (Davis et al. 2012;
Edgar and Pistikopoulos 2018).

Lack of systematic understanding on adequacy of
machine learningmethods

Cybermanufacturing focuses on personalization and cus-
tomized production, which will generate a wide variety
of heterogeneous data (Thoben et al. 2017). In the mean-
time, the adequacy of a machine learning method to such
heterogeneous data may be significantly different due to
the underlying statistical characteristics (e.g., the distribu-
tion of data) and/or contextualized computation tasks (e.g.,
fault diagnosis or quality control a specific manufacturing
process) (Chen and Jin 2018). Here, we call the different ade-
quacy as the “border” of themachine learningmethods. Thus,
it is important tomatch a specificdataset/contextualized com-
putation task with a proper machine learning method within
the border to ensure the efficiency and effectiveness of man-
ufacturing modeling and analysis.

In current practice, a typical paradigm to identify which
machine learning method for use is often heuristic based on
domain knowledge of a specific contextualized computation
task and/or data scientist’s personal experience in data anal-
ysis. Clearly, such a heuristic manner could require a large
number of trial-and-errors for identifying an efficient and
effective machine learning method under a given contextual-
ized computation task. It calls for a systematic methodology
to understand the border among different machine learning
methods, especially in the field of manufacturing modeling
and analysis.

There are several challenges in Industry 4.0 due to the lack
of systematic understanding of the borders among different
machine learningmethods.We list some of thembelow. First,
considering the heterogeneous manufacturing systems con-
nected in cybermanufacturing, it will require considerable
lead time for identifying a proper machine learning method
for each manufacturing system and computation task. For
example, for a thermal spray coating process using heteroge-
neous spray guns, it is reported that linear regression model
workedwell for one spray gunwas not applicable to the other
spray guns, due to the violation of the assumption of sam-
ples from the same underlying distribution (Chen and Jin
2018). Second, it is known that manufacturing processes and
systems are likely to be dynamic in model relationship, due
to a number of factors from raw materials, equipment status,
and environment. For example, it is reported that the model
parameters for crystal growth process should be adjusted
based on the degradation level of the equipment (Jin et al.
2019). However, most of the machine learning methods can-
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not generate dynamic models. Therefore, it will be beneficial
to efficiently match the optimal machine learning method
with the degradation levels. Third, cybermanufacturing often
requires different accuracy ofmachine learningmethodswith
the consideration of computational cost and utility costs. A
lack of understanding of borders among machine learning
methods could increase efforts to select the methods not only
be adequate, but also be reliable and responsive. As shown in
Kang et al. (2021), a tradeoff between the computational cost
of designs and the accuracy of surrogate models could facil-
itate the identification of the feasible design region, which is
crucial in the timeliness of personalized product realization in
Industry 4.0. Meanwhile, the time latency in machine learn-
ing training process, and the unreliable computation due to
computation node failure or loss of communication to Cloud
will prohibit the use of advanced, but computation intensive
algorithms.

A lack of reproducibility

When machine learning methods are employed, different
researchers or practitioners tend to choose different con-
figurations (e.g., splitting of the samples for training and
testing), even when they analyze the same dataset (Botvinik-
Nezer et al. 2020). This flexibility leads to difficulties in the
reproducibility ofmachine learningmethods, and needs to be
accounted for and controlled in manufacturing modeling and
analysis. However, even though there have been consistent
efforts to address the issue in science (Kenett and Rubin-
stein 2017; Botvinik-Nezer et al. 2020), the manufacturing
industry is less concerned with the issue of reproducibility of
analytical studies (Kenett 2020). In other words, companies
tend to overlook the experimental works designed to improve
processes and products for reproducibility using adequate
statistical criteria. In the meantime, fierce competition in the
era of Industry 4.0 allows only short-term opportunities to try
out new products and/or new process setups, which calls for
ensuring the reproducibility of machine learning methods in
a contextualized computation task.

A lack of reproducibility leads to the following challenges
in cybermanufacturing. First, in the manufacturing industry,
a lack of reproducibility of machine learning methods can
result in misleading decision-making, which is very costly
and time-consuming. For example, it is reported that around
50% of the costs incurred in new product development tend
to be spent on unnecessary design iteration (Schütze and
Störmer 2012), which can be avoided by accurate and reli-
able predictions. Second, since cybermanufacturing involves
efficient utilization of heterogeneous manufacturing systems
connected to cybermanufacturing network (Lee et al. 2015;
Jeschke et al. 2017; Wang et al. 2020a), reproducibility
should be ensured such that consistent product quality can
be achieved across the cybermanufacturing network. Lastly,

a lack of reproducibility of machine learning methods can
result in increased product variation, which can deterio-
rate customer satisfaction (Luo et al. 2005; Dharmesti and
Nugroho 2013). It is an important issue, since improved cus-
tomer satisfaction is one of the most important goals to be
achieved in the context of Industry 4.0 (Bortolini et al. 2017;
de Man and Strandhagen 2017; Bär et al. 2018).

A promising direction: computation
pipelines in cybermanufacturing

In the post-COVID-19 industry, it is very important to
automate the identification of an optimal configuration for
machine learning methods and match the methods to the
contextualized computation tasks (e.g., variation analysis
and anomaly detection), including accuracy, responsiveness,
reliability, interpretability, etc. (Wang et al. 2020b). In the
literature, this matching problem has been formulated as a
computation pipeline recommendation problem (Chen and
Jin 2018). In the rest of this section, Sect. 4.1 will review
the general concept of computation pipelines for machine
learning. Then, Sect. 4.2 will review the state-of-art on the
computation pipeline recommendation.

Concept of computation pipelines

The concept of computation pipelines formachine learning is
suggested from the software engineering community to sys-
tematically organize a sequence ofmethod options, including
data collection, data preprocessing, data filtering, feature
selection (optional), data-fusion/machine learning methods,
computation, and post-processing (Chen and Jin 2018). For
example, Scikit-learn, which is a machine learning library
for Python, proposed a computation pipeline to assemble
several steps that can be cross-validated together with dif-
ferent setting parameters (Pedregosa et al. 2011). Similarly,
Google® Tensorflow (Abadi et al. 2016) and Pytorch (Paszke
et al. 2019), which are the widely used deep learning plat-
forms, suggested the idea of computational graph to organize
computation pipeline for deep learning. These computa-
tion pipelines enhance the readiness and traceability to use
machine learning and deep learning method options.

In themanufacturing industry,most relevantworks involv-
ing computation pipelines have focused on constructing
an autonomous framework to tune a specific computation
pipeline or only a limited number of method options. Exam-
ples of such works include the application of computation
pipelines for preventive maintenance operation (O’Donovan
et al. 2015), fault prognostics (Kozjek et al. 2017), and
production planning (Wang et al. 2018b). While the afore-
mentioned works are applicable to a specific contextualized
computation task, they cannot be adequate in different tasks
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Fig. 3 An illustration of computation pipeline recommendation pro-
viding optimal computation pipelines for two different contextualized
computation tasks (scenario 1: variation analysis for Fused Filament

Fabrication (FFF), marked as the blue pipeline; and scenario 2: anomaly
detection for Aerosol Jet� Printing (AJP), marked as the red pipeline)
(Color figure online)

whenmodeling assumptions are violated (e.g., the underlying
distribution of data is different). In other words, to ensure the
effectiveness of manufacturing modeling and analysis, one
should efficiently switch to a proper computation pipeline
from a number of alternatives that fits well with the sce-
nario. However, the current practice relies on trial-and-errors
according to domain knowledge and experiences, which is
too time-consuming to identify the optimal method options
for a proper computation pipeline.

Computation pipeline recommendation

Computation pipeline recommendation is a relatively new
research field aiming at identifying a proper computation
pipeline fromanumber of alternative configurations. Figure 3
shows an example of computation pipeline recommendation.
Given different contextualized computation tasks, computa-
tion pipeline recommendation efficiently explores available
computation pipelines (shown as the connections between
the method options in Fig. 3) and provides the optimal
pipeline for each of the contextualized computation tasks.
This example illustrates providing different optimal compu-
tation pipelines for scenario 1 (marked as red computation
pipeline in Fig. 3) and scenario 2 (marked as blue computa-
tion pipeline in Fig. 3).

Sparks et al. (2017) and Chen and Jin (2018) are the
pioneers of computation pipeline recommendation. Sparks
et al. (2017) presented a system called KeystoneML, which
enables thedevelopment of end-to-end computationpipelines
for machine learning. Specifically, by capturing the end-
to-end machine learning application, KeystoneML could
optimize the whole-pipeline such that it can automatically
adapt to changes in data, hardware, and other environ-
mental factors. On the other hand, Chen and Jin (2018)
proposed a learning-to-rank method to rank the pipelines
with Top-N prediction accuracy to identify proper pipelines
for quality prediction. They demonstrated the effectiveness
and efficiency of the proposed method via multiple datasets
from thermal spray coating, aerosol jet® printing, and fused
deposition modeling. For the datasets, their method could
ease the use of data-fusion and machine learning methods
and effectively avoid unnecessary computation workloads
involving exhaustive exploration of all the available com-
putation pipeline. Similar works relevant to computation
pipeline recommendation include the work called “data ana-
lytics as a service (Ardagna et al. 2018)”. Specifically, the
approach aims at identifying proper computation pipeline
conforming to a specific set of requirements and/or platforms,
by utilizing a model-based approach founded upon a domain
ontology on big data services.
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Computation pipeline recommendation has been adopted
not only to improve the quality prediction, but also to
improve other important sectors of Industry 4.0: informative
visualization and efficient human-machine collaboration.
In the following-up research of Chen et al. (2021), they
extended the concept of computation pipeline recommenda-
tion to the personalization of a visualization system, which
is called Personalized Recommender System for Informa-
tion visualization Methods via Extended matrix completion
(PRIME) (Chen et al. 2021). The main improvement of
PRIME over the previous method lies in incorporating the
wearable sensor data for pipeline recommendation, such
that pipeline recommendation can be adopted to improve
human-computer interaction to acquire insights from com-
plex datasets. Specifically, PRIME quantitatively models
covariates (i.e., wearable sensor data) to predict recommen-
dation scores (e.g., perceived complexity, mental workload,
etc.) for users to adapt the visualization specific to the
contextualized computation task. In addition, PRIME can
make accurate recommendations even for new users or new
contextualized computation tasks based on historical wear-
able sensor signals and recommendation scores. Chen et al.
(2021) demonstrated that PRIME could achieve satisfactory
recommendation accuracy for adapting visualization, even
when there are limited historical datasets. This capability
contributes to designing a new generation of visualization
systems that adapt to users’ real-time status. PRIME can
support researchers in reducing the sample size requirements
to quantify individual differences, and practitioners in adapt-
ing visualizations according to user states and contextualized
computation tasks in a real-time manner.

Computation pipeline recommendation is expected to be
generalized such that it can stimulate the broader adop-
tion of machine learning in the manufacturing industry,
in the context of cybermanufacturing. For example, Chen
and Jin (2021) proposed an improved computation pipeline
recommendation framework, named as Adaptive computa-
tion Pipelines (AdaPipe) (Chen and Jin 2021). The main
improvement of AdaPipe over the previous methods lies in
considering the similarities of computation pipelines from
crowdsourcing and word embedding, and features of contex-
tualized computation tasks (i.e., process types, manufactur-
ing settings, and quality specifications). In addition, AdaPipe
can be adopted to recommend computation pipelines for a
wide variety of contextualized computation tasks, including
the lowest prediction error, lowest time latency, etc.. They
demonstrated the effectiveness and efficiency of AdaPipe
via 60 bootstrapped data sets from thermal spray coating,
printed electronics, and additive manufacturing processes,
and 27 computation pipelines. The generalization and further
advancement of computation pipeline recommendation will
provide a systematic and efficient methodology to explore
a number of method options without time-consuming trial-

and-error. We envision that this will contribute to addressing
the key challenges reviewed in this paper by providing a
proper computation pipeline if a contextualized computa-
tion task is susceptible to either of the key challenges.
To achieve the goal, the future direction for computation
pipeline recommendation lies in incorporating the issues
related to the challenges (e.g., information quality, compu-
tation complexity, available engineering knowledge, etc.) in
its recommendation procedure.

Conclusion

In the era of Industry 4.0, the integration of cybermanu-
facturing and state-of-the-art machine learning methods is
expected to greatly improve product quality, product real-
ization efficiency, personalization, and domain knowledge
discovery. In thiswork,we have focused on reviewing several
key challenges in modeling and analysis in the transition into
cybermanufacturing. These include required learning times
in heterogeneous manufacturing systems, matching of opti-
mal machine learning methods with equipment degradation
levels, and the adaptation of machine learning methods with
considerations of computational cost and utility costs. The
overall goal is to optimize system reliability and respon-
siveness. Aligned with the challenges, we have provided a
promising direction of using computation pipeline recom-
mendation as an enabling technology of cybermanufacturing.
The generalization of computation pipeline for all algorithms
will facilitate the broader adoption of machine learning
in the manufacturing industry by efficiently providing an
optimal configuration of machine learning methods without
extensive trial-and-error. Note that efficient deployment of
machine learning methods in cybermanufacturing becomes
more important than ever before, the use of computation
pipeline can be a driving force to flexible and resilient man-
ufacturing operations in the post-COVID-19 industry. Areas
for further work include (1) investigating the impact of infor-
mation quality in computation, (2) better understanding the
reproducibility and repeatability of computational flows, (3)
integrating analytic recommendations with constraints from
communication, computation, and control, and (4) further
extension of computation pipeline to improve the broader
area of human-machine interaction (e.g., mutual learning
between human and machine). This paper provides an ini-
tial mapping of such challenges.
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