Skip to main content

Advertisement

Log in

Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This article studies the scheduling problem for a remanufacturing system with parallel disassembly workstations, parallel flow-shop-type reprocessing lines and parallel reassembly workstations. The problem is formulated as a multi-objective optimization problem which contains both energy consumption and makespan to be addressed using an improved multi-objective invasive weed optimization (MOIWO) algorithm. Two vectors regarding workstation assignment and operation scheduling jointly form a solution. A hybrid initialization strategy is utilized to improve the solution quality and the Sigma method is adopted to rate each solution. A novel seed spatial dispersal mechanism is introduced and four designed mutation operations cooperate to enhance search ability. A group of numerical experiments and a practical case involving the disassembly of transmission devices are carried out and the results validate the effectiveness of the MOIWO algorithm for the considered problem compared with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albertelli, P., Keshari, A., & Matta, A. (2016). Energy oriented multi cutting parameter optimization in face milling. Journal of Cleaner Production, 137, 1602–1618.

    Article  Google Scholar 

  • An, Y. J., Chen, X. H., Zhang, J., & Li, Y. H. (2020). A hybrid multi-objective evolutionary algorithm to integrate optimization of the production scheduling and imperfect cutting tool maintenance considering total energy consumption. Journal of Cleaner Production, 268, 121540.

    Article  Google Scholar 

  • Cai, C., Lei, D. M., & Li, M. (2020). A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop. International Journal of Production Research. https://doi.org/10.1010/00207543.2020.1780333

    Article  Google Scholar 

  • Chen, H., Zhou, Y. Q., He, S. C., Quyang, X. X., & Guo, P. G. (2013). Invasive weed optimization algorithm for solving permutation flow-shop scheduling problem. Journal of Computational and Theoretical Nanoscience, 10(3), 708–713.

    Article  Google Scholar 

  • Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290(1–2), 813–836.

    Article  Google Scholar 

  • Chikhi, N., Abbas, M., Bekrar, A., Benmansour, R., & Hanafi, S. (2014). On the complexity of robotic flow shop with transportation constraints. In ROADEF-15ème congrès annuel de la Société française de recherche opérationnelle et d'aide à la décision, Société française de recherche opérationnelle et d'aide à la decision.

  • Daniel, V., & Guide, R. (1997). Scheduling with priority dispatching rules and drum-buffer-rope in a recoverable manufacturing system. International Journal of Production Economics, 53(1), 101–116.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Enayatifar, R., Yousefi, M., Adbullah, A. H., & Darus, A. N. (2013). MOICA: A novel multi-objective approach based on imperialist competitive algorithm. Applied Mathematics and Computation, 219(17), 8829–8841.

    Article  Google Scholar 

  • Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–240.

    Article  Google Scholar 

  • Fattahi, P., Hosseini, S. M. H., Jolai, F., & Tavakkoli-Moghaddam, R. (2014). A branch and bound algorithm for hybrid flow shop scheduling problem with setup time and assembly operations. Applied Mathematical Modelling, 38(1), 119–134.

    Article  Google Scholar 

  • Feng, Y. X., Zhou, M. C., Tian, G. D., Li, Z. W., Zhang, Z. F., Zhang, Q., et al. (2019). Target disassembly sequencing and scheme evaluation for CNC machine tools using improved multiobjective ant colony algorithm and fuzzy integral. IEEE Transactions on Systems Man Cybernetics-Systems, 49(12), 2438–2451.

    Article  Google Scholar 

  • Foumani, M., & Jenab, K. (2013). Analysis of flexible robotic cells with improved pure cycle. International Journal of Computer Integrated Manufacturing, 26(3), 201–215.

    Article  Google Scholar 

  • Foumani, M., & Smith-Miles, K. (2019). The impact of various carbon reduction policies on green flowshop scheduling. Applied Energy, 249, 300–315.

    Article  Google Scholar 

  • Frigerio, N., & Matta, A. (2015). Energy-efficient control strategies for machine tools with stochastic arrivals. IEEE Transactions on Automation Science and Engineering, 12(1), 50–61.

    Article  Google Scholar 

  • Fu, Y. P., Tian, G. D., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. Y. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515–525.

    Article  Google Scholar 

  • Fu, Y. P., Zhou, M. C., Guo, X. W., & Qi, L. (2021). Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm. Journal of Cleaner Production, 278, 123364.

    Article  Google Scholar 

  • Guide, V. D. R. (1995). A simulation-model of drum-buffer-rope for production planning and control at a Naval Aviation Depot. SIMULATION, 35(3), 157–168.

    Article  Google Scholar 

  • Guide, V. D. R. (2000). Production planning and control for remanufacturing: Industry practice and research needs. Journal of Operations Management, 18(4), 467–483.

    Article  Google Scholar 

  • Guide, V. D. R., Kraus, M. E., & Srivastava, R. (1997). Scheduling policies for remanufacturing. International Journal of Production Economics, 48(2), 187–204.

    Article  Google Scholar 

  • Guide, V. D. R., & Srivastava, R. (1997). An evaluation of order release strategies in a remanufacturing environment. Computers & Operations Research, 24(1), 37–47.

    Article  Google Scholar 

  • Gungor, A., & Gupta, S. M. (2001). Disassembly sequence plan generation using a branch-and-bound algorithm. International Journal of Production Research, 39(3), 481–509.

    Article  Google Scholar 

  • Heese, S., Cattani, K., & Ferrer, G. (2005). Competitive advantage through take-back of used products. European Journal of Operational Research, 164(1), 143–157.

    Article  Google Scholar 

  • Jahangir, H., Mohammadi, M., Pasandideh, S. H. R., & Nobari, N. Z. (2019). Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery. Journal of Intelligent Manufacturing, 30(6), 2327–2353.

    Article  Google Scholar 

  • Jiang, Z. G., Jiang, Y., Wang, Y., Zhang, H., Cao, H. J., & Tian, G. D. (2019). A hybrid approach of rough set and case-based reasoning to remanufacturing process planning. Journal of Intelligent Manufacturing, 30(1), 19–32.

    Article  Google Scholar 

  • Jolai, F., Foumani, M., Tavakoli-Moghadam, R., & Fattahi, P. (2012). Cyclic scheduling of a robotic flexible cell with load lock and swap. Journal of Intelligent Manufacturing, 23(5), 1885–1891.

    Article  Google Scholar 

  • Joshi, D., & Gupta, S. M. (2019). Evaluation of design alternatives of End-Of-Life products using internet of things. International Journal of Production Economics, 208, 281–293.

    Article  Google Scholar 

  • Kalayi, B., & Gupta, S. M. (2013). Ant colony optimization for sequence-dependent disassembly line balancing problem. Journal of Manufacturing Technology Management, 24(3), 413–427.

    Article  Google Scholar 

  • Kerin, M., & Pham, D. T. (2019). A review of emerging industry 4.0 technologies in remanufacturing. Journal of Cleaner Production, 237, 117805.

    Article  Google Scholar 

  • Kim, G., Yu, J. M., & Lee, D. H. (2015). Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines. International Journal of Production Research, 53(6), 1819–1831.

    Article  Google Scholar 

  • Kim, J. M., Zhou, Y. D., & Lee, D. H. (2017). Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines. International Journal of Advanced Manufacturing Technology, 91(9–12), 3697–3708.

    Article  Google Scholar 

  • Li, D. S., Zhang, C. Y., Tian, G. D., Shao, X. Y., & Li, Z. W. (2018a). Multiobjective program and hybrid imperialist competitive algorithm for the mixed-model two-sided assembly lines subject to multiple constraints. IEEE Transactions on Systems, Man, and Cybernetics: System, 48(1), 119–129.

    Article  Google Scholar 

  • Li, X. Y., Lu, C., Gao, L., Xiao, S. Q., & Wen, L. (2018b). An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop. IEEE Transactions on Industrial Informatics, 14(12), 5400–5409.

    Article  Google Scholar 

  • Liu, Y., Zhou, Z. D., Pham, D. T., Xu, W. J., Cui, J., & Yang, C. (2020). Service platform for robotic disassembly planning in remanufacturing. Journal of Manufacturing Systems, 57, 338–356.

    Article  Google Scholar 

  • Lu, C., Gao, L., Li, X. Y., Pan, Q. K., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228–238.

    Article  Google Scholar 

  • Lugaresi, G., Alba, V. V., & Matta, A. (2021). Lab-scale models of manufacturing systems for testing real-time simulation and production control technologies. Journal of Manufacturing Systems, 58, 93–108.

    Article  Google Scholar 

  • Lund, R. T. (1984). Remanufacturing. Technology Review, 87(2), 19–29.

    Google Scholar 

  • Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1(4), 355–366.

    Article  Google Scholar 

  • Misaghi, M., & Yaghoobi, M. (2019). Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. Journal of Computational Design and Engineering, 6(3), 284–295.

    Article  Google Scholar 

  • Mousavi, S. M., Alikar, N., Tavana, M., & Di-Caprio, D. (2019). An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems. Journal of Intelligent Manufacturing, 30(3), 1175–1194.

    Article  Google Scholar 

  • Natarajan, E., Kaviarasan, V., Lim, W. H., Tiang, S. S., Parasuraman, S., & Elango, S. (2020). Non-dominated sorting modified teaching-learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE). Journal of Intelligent Manufacturing, 31(4), 911–935.

    Article  Google Scholar 

  • Ozceylan, E., Kalayci, C. B., Gungor, A., & Gupta, S. M. (2019). Disassembly line balancing problem: A review of the state of the art and future directions. International Journal of Production Research, 57(15–16), 4805–4827.

    Article  Google Scholar 

  • Parkinson, J., & Thompson, G. (2003). Analysis and taxonomy of remanufacturing industry practice. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 217(E3), 243–256.

    Article  Google Scholar 

  • Pedrielli, G., Matta, A., Alfieri, A., & Zhang, M. Y. (2018). Design and control of manufacturing systems: A discrete event optimization methodology. International Journal of Production Research, 56(1–2), 543–564.

    Article  Google Scholar 

  • Sang, Y., Pan, Q. K., Duan, P. Y., & Li, J. Q. (2018). An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems. Journal of Intelligent Manufacturing, 29(6), 1337–1349.

    Article  Google Scholar 

  • Stanfield, P. M., King, R. E., & Hodgson, T. J. (2006). Determining sequence and ready times in a remanufacturing system. IIE Transactions, 38(7), 597–607.

    Article  Google Scholar 

  • Tang, H. T., Chen, R., Li, Y. B., Peng, Z., Guo, S. S., & Du, Y. Z. (2019). Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: An application from a casting workshop. Applied Soft Computing, 78, 176–194.

    Article  Google Scholar 

  • Thornton, W., & Hunsucker, J. L. (2004). A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage. European Journal of Operational Research, 152(1), 96–114.

    Article  Google Scholar 

  • Tian, G. D., Liu, Y. M., Ke, H., & Chu, J. W. (2012). Energy evaluation method and its optimization models for process planning with stochastic characteristics: A case study in disassembly decision-making. Computers & Industrial Engineering, 63(3), 553–563.

    Article  Google Scholar 

  • Tian, G. D., Ren, Y. P., Feng, Y. X., Zhou, M. C., Zhang, H. H., & Tan, J. R. (2019). Modeling and planning for dual-objective selective disassembly using and/or graph and discrete artificial bee colony. IEEE Transactions on Industrial Informatics, 15(4), 2456–2468.

    Article  Google Scholar 

  • Tian, G. D., Ren, Y. P., & Zhou, M. C. (2016). Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3009–3021.

    Article  Google Scholar 

  • Tian, G. D., Zhang, H. H., Feng, Y. X., Jia, H. F., Zhang, C. Y., Jiang, Z. G., Li, Z. W., & Li, P. G. (2017). Operation patterns analysis of automotive components remanufacturing industry development in China. Journal of Cleaner Production, 164, 1363–1375.

    Article  Google Scholar 

  • Tian, G. D., Zhou, M. C., & Li, P. G. (2018). Disassembly sequence planning considering fuzzy component quality and varying operational cost. IEEE Transactions on Automation Science and Engineering, 15(2), 748–760.

    Article  Google Scholar 

  • Wang, L., Guo, Y. Y., Zhang, Z. L., Xia, X. H., & Cao, J. H. (2020a). Generalized growth decision based on cascaded failure information: Maximizing the value of retired mechanical products. Journal of Cleaner Production, 269, 122176.

    Article  Google Scholar 

  • Wang, W. Y., Mo, D. Y., Wang, Y., & Tseng, M. M. (2019). Assessing the cost structure of component reuse in a product family for remanufacturing. Journal of Intelligent Manufacturing, 30(2), 575–587.

    Article  Google Scholar 

  • Wang, W. J., Tian, G. D., Chen, M. N., Tao, F., Zhang, C. Y., AI-Ahmari, A., Li, Z. W., & Jiang, Z. G. (2020b). Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 245, 118714.

    Article  Google Scholar 

  • Wang, W. J., Tian, G. D., Zhang, T. Z., Jabarullah, N. H., Li, F. Y., Fathollahi-Fard, A. M., Wang, D. Q., & Li, Z. W. (2021). Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory. Journal of Cleaner Production, 281, 124724.

    Article  Google Scholar 

  • Yang, Y. S., Yang, G., Tian, G. D., & Zhuang, Q. W. (2020). Comprehensive evaluation of disassembly performance based on the ultimate cross-efficiency and extension-gray correlation degree. Journal of Cleaner Production, 245, 118800.

    Article  Google Scholar 

  • Yu, J. M., & Lee, D. H. (2018). Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement. Computers & Industrial Engineering, 120, 266–279.

    Article  Google Scholar 

  • Yuan, G., Yang, Y. S., & Pham, D. T. (2020). Multiobjective ecological strategy optimization for two-stage disassembly line balancing with constrained-resource. IEEE Access, 8(88745–88758), 2020.

    Google Scholar 

  • Zaretsky, V., & Branzai, E. V. (2005). Effect of rolling bearing refurbishment and restoration on bearing life and reliability. Tribology Transactions, 48(1), 32–44.

    Article  Google Scholar 

  • Zhang, H. H., Peng, Y., Hou, L., Tian, G. D., & Li, Z. W. (2019). A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions. Information Sciences, 481, 491–506.

    Article  Google Scholar 

  • Zhang, H. H., Peng, Y., Hou, L., Wang, D. Q., Tian, G. D., & Li, Z. W. (2020). Multistage impact energy distribution for whole vehicles in high-speed train collisions: Modeling and solution methodology. IEEE Transactions on Industrial Informatics, 16(4), 2486–2499.

    Article  Google Scholar 

  • Zhang, Q. F., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  Google Scholar 

  • Zhou, Y. Q., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285–292.

    Article  Google Scholar 

  • Zhu, L. X., Zhang, Z. Q., Wang, Y., & Cai, N. (2020). On the end-of-life state oriented multi-objective disassembly line balancing problem. Journal of Intelligent Manufacturing, 31(6), 1403–1428.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (Grant Nos 52075303 and 51775238), and in part by the Open Project of the State Key Laboratory of Fluid Power and Mechatronic Systems (Grant No GZKF-202012), and in part by the Fundamental Research Funds for the Central Universities (Grant No. 2019GN048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdong Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6, 7, 8 and 9.

Table 5 Working times of products and working/idle powers of workstations in the disassembly/reassembly shop
Table 6 Processing times of components on workstations in RL1
Table 7 Processing times of components on workstations in RL2
Table 8 Processing times of components on workstations in RL3
Table 9 Processing times of components on workstations in RL4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tian, G., Yuan, G. et al. Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm. J Intell Manuf 34, 1065–1083 (2023). https://doi.org/10.1007/s10845-021-01837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01837-5

Keywords

Navigation