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Abstract
Highly complex data streams from in-situ additive manufacturing (AM) monitoring systems are becoming increasingly
prevalent, yet finding physically actionable patterns remains a key challenge. Recent AM literature utilising machine learning
methods tend to make predictions about flaws or porosity without considering the dynamical nature of the process. This
leads to increases in false detections as useful information about the signal is lost. This study takes a different approach and
investigates learning a physical model of the laser powder bed fusion process dynamics. In addition, deep representation
learning enables this to be achieved directly from high speed videos. This representation is combined with a predictive state
space model which is learned in a semi-supervised manner, requiring only the optimal laser parameter to be characterised. The
model, referred to as FlawNet, was exploited to measure offsets between predicted and observed states resulting in a highly
robust metric, known as the dynamic signature. This feature also correlated strongly with a global material quality metric,
namely porosity. The model achieved state-of-the-art results with a receiver operating characteristic (ROC) area under curve
(AUC) of 0.999 when differentiating between optimal and unstable laser parameters. Furthermore, there was a demonstrated
potential to detect changes in ultra-dense, 0.1% porosity, materials with an ROCAUC of 0.944, suggesting an ability to detect
anomalous events prior to the onset of significant material degradation. The method has merit for the purposes of detecting out
of process distributions, while maintaining data efficiency. Subsequently, the generality of the methodology would suggest
the solution is applicable to different laser processing systems and can potentially be adapted to a number of different sensing
modalities.

Keywords Additive manufacturing (AM) · Anomaly detection · Deep learning · Dynamics · Laser powder bed fusion
(L-PBF) · State space models (SSM)

Introduction

As sensor data fidelity improves in additive manufacturing
(AM)monitoring systems, so does the challenge of extracting
useful andmeaningful patterns efficiently. TheAMprocesses
are physically driven, yet underlying phenomena are poorly
understood and highly challenging to simulate during the
build process (Francois et al. 2017). However, causal pat-
terns are present in the data suggesting a place for data-driven
models which have the potential to be much faster than their
simulated counterparts. There is, therefore, a need for devel-
oping such causal dynamics models capable of exploiting
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underlying physical patterns, enabling detection of anoma-
lous events, leading to on-line quality monitoring of the AM
process.

This need is particularly evident in Laser Powder Bed
Fusion (L-PBF), the most widely used metal 3D printing
process. A thin layer of powder is spread across a build
plate, which is then fused with a rapidly scanning laser; the
cycle is repeated until a 3Dmetal component is formed. This
enables an efficient manufacturing process, while minimis-
ing material and energy usage (Ford and Despeisse 2016).
Furthermore, the design freedom reduces the number of stan-
dard components and allows engineers to greatly optimise the
design process (Gao et al. 2015). Finally, the mass produc-
tion of end-use components would disrupt manufacturing as
it is understood today (Attaran 2017).

However, a complex set of interactions occur at the micro
scale between the laser, powder and the chamber environment
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resulting in variability (Khairallah et al. 2020). The variabil-
ity frompart-to-part is caused by the accumulation of defects,
including porosity and micro-cracks, that are inherently gen-
erated from the stochastic nature of the process (Grasso and
Colosimo 2017). Parts are, therefore, not repeatable enough
to meet stringent qualification and certification standards.
This means that costly post-build inspection, such as Com-
puted Tomography (CT) scanning or functional testing, is
required to qualify components for end-use applications.
(Debroy et al. 2019).

This has motivated the development of advanced in-situ
monitoring systems, with the aim of online quality mon-
itoring. This includes advanced imaging such as co-axial
high speed cameras (Hooper 2018), off-axis imaging (Grasso
and Colosimo 2017) and in-situ X-ray imaging (Cunning-
ham et al. 2019). These systems have shown the ability to
detect process signatures which lead to porosity and other
flaws (Grasso and Colosimo 2017). However, a vast amount
of complex data is generated and proves challenging to
analyse, beyond simple experiments, using traditional meth-
ods.

This study seeks to fill a gap in the AM literature of
learning a data-driven dynamics model of the L-PBF process
directly from images to enable efficient anomaly detection.
This is in contrast to recent studies,where important time cor-
relations are not considered and independent and identically
distributed (i.i.d.) data is assumed when machine learn-
ing is applied. Though vast quantities of high dimensional
data can be captured with high frequency, the application
may also be susceptible to potential sampling bias, where
only a small portion of the state space can be captured in
each experiment. Since the AM process has a large num-
ber of process parameters (Grasso and Colosimo 2017),
collecting enough data to model each signature is poten-
tially intractable. To improve data efficiency, the input and
output information as well as time-correlations can be mod-
elled to explicitly learn the process dynamics which is a
more complex task. It is hypothesised that this encourages
sampling efficiency, which would agree with recent litera-
ture (Buesing et al. 2018). In this study, the laser dynamics
are learned while the residual error between the predic-
tions and measurement is monitored. This is referred to
as the dynamic signature. Furthermore, an extension to the
variational recurrent neural network (VRNN) is proposed,
where a semi-supervised model is capable of drastically
improving detection of anomalies. The model was originally
inspired by the Kalman filter, while dynamics are modelled
in latent space (Chung et al. 2015). The method is therefore
referred to as Filtering Latent Anomalies with Neural Net-
works (FlawNet).

Literature review

A natural step in AM is to build intelligent systems capable
of automating the detection of flaws during the process. This
has driven research in AM towards machine learning includ-
ing anomaly detection with photodiodes (Okaro et al. 2019),
as well as high speed imaging (Mitchell et al. 2020). Deep
learning has also proven to be effective at detecting defective
melt pools (Scime and Beuth 2019) and predicting material
surface height from images (Yuan et al. 2019). Meanwhile,
image features have also been classified using convolutional
neural networks (CNNs) with labelled data (Zhang et al.
2018). Furthermore, autoencoders have been used to detect
anomalies (Tan et al. 2019). Though these studies use signals
from a highly dynamic process, an i.i.d. assumption is made,
where the useful time-series information becomes lost. This
loss of granularity limits further development of monitoring
systems in AM.

However, sequential patterns in the data have been shown
to improve results. Zhang et al. (2019) used a hybrid CNN
to classify images over multiple frames to account for the
temporal and spatial aspects of the data. Nonetheless, the
correlations between each frame were not directly modelled.

There is, presently, a gap in the AM literature related to
modelling dynamics directly from data for anomaly detec-
tion. Since sequential data can often be highly autocorrelated,
failing to account for it can increase the number of false
alarms (Alwan 1992). Efforts to model dynamics in AM for
the purposes of control have previously been demonstrated
using linear models from photodiodes (Kruth et al. 2007;
Craeghs et al. 2010). Thermal fields have also been predicted
from simulated data (Ren et al. 2020). However, a lack ofAM
literature is presentwhere sequential data points aremodelled
directly from in-situ cameras for anomaly detection. The data
has simply been too complex and high dimensional for this
to be technically feasible.

Deep learning has shown great potential in anomaly detec-
tion of high dimensionality sensors, where the ability to
reduce dimensionalitywith autoencodersmakes this problem
tractable (Hinton and Salakhutdinov 2006). Recent devel-
opment of the variational autoencoder (VAE) have allowed
anomalies to be detected directly from images using amethod
grounded in probability theory (Kingma and Welling 2013).
This has subsequently been used in industrial applications
for anomaly detection in images (Han et al. 2020) and com-
plex sensor data (Lee et al. 2019). However, the VAE also
assumes i.i.d. and these studies have not needed to account
for temporal structure in the data.

Neural networks have a long history in modelling dynam-
ics and system identification (Chen et al. 1990). Furthermore,
using a structured probabilistic models improve the effi-
ciency of representing probability distributions, where only
the interactions of interest are modelled (Goodfellow et al.
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2016). This has led to deep learning being combined with
idea of state space modelling (SSM), extending the applica-
tion of the VAE to a VRNN (Krishnan et al. 2015; Chung
et al. 2015; Karl et al. 2016; Buesing et al. 2018). Since pre-
dictions are made in low dimensional latent state space, these
models aremore computationally efficient for fast prediction.
Furthermore, accuracy is improved by explicit modelling of
uncertainty in the dynamics (Buesing et al. 2018).

There are also a wide range of studies exploring the use
of time-series neural networks for detecting anomalies and
learning dynamics. Recurrent neural networks (RNNs) have
been widely used for anomaly detection in time-series data
(Hundman et al. 2018),while anomaly detection in video data
has also been studied (Morais et al. 2019). Tan et al. (2020)
used a long short-term memory (LSTM) neural network
to detect anomalies in simulated non-linear fluid dynam-
ics. Sölch et al. (2016) used a latent dynamics model to
detect anomalies in a robotics time-series data. Slavic et al.
(2020) used a time-series anomaly detection approach in a
self-driving application. Through modelling of time-series
correlations, these studies show improved performance com-
pared to assuming independent data in each sample interval.

AM monitoring systems could potentially greatly benefit
from exploiting time-series modelling methods. Sequential
representation learning models are especially suited to high
dimensional data such as video feeds. However, less liter-
ature exists in detecting anomalies using this method in an
AM context. Combining the newer representation learning
methods and well studied dynamics modelling approaches
would enable approaches for modelling dynamics directly
from images without hand engineering features. The great
variety of AM monitoring systems available suggest a need
for such flexible methods. Meanwhile, modelling causal pat-
terns, such as input/output correlations, through structured
models enables the physical nature of the problem to be cap-
tured inductively.

Method

Problem description

Figure 1 shows a simplified schematic of the L-PBFmachine
considered. Two 100 kHz high speed cameras (Photron Fast-
cam SA5) capture data at near-infrared wavelengths (700 nm
and 950 nm) to detect high temperature information (Hooper
2018). The cameras are mounted co-axial with the laser and
therefore the laser is measured in a Lagrangian perspec-
tive, where the camera is aligned with the laser as it moves.
This co-axial setup captures the process signatures as the
material is being fused. This enables the capture of flaw for-
mation, which could be caused by damage in previous layers,
laser obstructions from spatter, under-melting or unstable

laser keyholing (Grasso and Colosimo 2017; Khairallah et al.
2020). The overall aim is to detect any such anomalous events
leading to a degradation of material quality.

The dynamic anomaly detection problem involves identi-
fying an anomalous event where a list of sequential obser-
vations are present, (x1, x2, . . . , xt ) with controlled input
(u1,u2, . . . ,ut ). Images are the observations and the laser
power is the input in thepresent case.Ananomalous sequence
is one which does not conform to standard operating condi-
tions based on pre-defined set points or decision boundaries.
The dynamic model is required to make predictions and the
residual error is measured to identify an anomaly. Specifi-
cally, this involves predicting the state at the present time
step (ẑt ) given previous observations (x<t ), states (z<t ) and
inputs (u<t ). A new observation (xt ) is used to update the
state,meaning the residual error can bemeasured, (||zt −ẑt ||).
This is referred to as the dynamic signature.

Themodel, therefore, detects anomalous events by exploit-
ing the sequential patterns in the data.With an ideal predictor,
the dynamic signature becomes a random variable indepen-
dent of time. This enables the use of traditional process
monitoring methods (Montgomery 2007). A reduction in
false positive rate (FPR) is themain effect seen (Alwan1992).
This is important inAMbecause of two requirements: (1) true
positive rate (TPR) needs to be maximised as false negatives
pose a larger potential downside risk, (2) detection from a
minimum number of samples is required to increase resolu-
tion, without requiring the increased cost of a large number
of additional sensors.

Models

Autoregressive model

Markov Models exploit the sequential nature of temporal
data (Bishop 2006). A first-order Markov chain is shown
in Fig. 2a where the conditional distribution is given by
p(xn|xn−1,un−1), and each observation is considered inde-
pendent of previous observations given only the most recent.
If each observation is assumed to be a continuous normal
distribution, in which the mean is a linear function of the
parent nodes, then this is referred to as the autoregressive
(AR) model (Bishop 2006). The addition of inputs result in
the AR with extra inputs (ARX) model and can be expressed
as a stochastic difference equation as follows (Ljung 1999):

x̂t = Axt−1+ But−1+ εt , (1)

where xt and ut are observations and inputs. The parameters,
A and B are calculated from data using the ordinary least
squares (OLS) method, and comes under the class of models
known as linear time invariant (LTI) in system identification
(Ljung 1999). A similar first order model has been used for
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Fig. 1 a Simplified schematic of L-PBF machine fitted with co-axial high speed imaging sensors, b bird’s-eye view of a 5 mm cylinder being
printed, c example of collected data from one of the high speed imaging sensors used in this work

(a) (b) (d)(c)

Fig. 2 Graphical representation of models considered in this study. a ARX, bVAE, c SSM, d VRNN. Large circles are random variables and small
solid circles in d are deterministic. Shaded and unshaded circles correspond to observed and latent random variables respectively

control applications in AM (Kruth et al. 2007; Craeghs et al.
2010).

In this work the ARX model, referred to as the linear
model, is considered a comparative baseline. The mean peak
image intensity and laser power are used as observations and
inputs respectively. The model parameters, A, and B, are
fitted to a sequence length of 20 samples. The mean values
are then calculated for 1300 sequences.

Variational autoencoder

When considering high dimensional data such as images, it
is often useful to consider latent variable models, giving a
higher level of abstraction to represent the data. One method
of calculating latent variables is by compressing data to a
lower dimension referred to as a bottleneck, the objective
being to reconstruct the input data. A well known probabilis-
tic method of achieving this is the VAE (Kingma andWelling
2013; Rezende et al. 2014). The graphical model of the VAE
can be seen in Fig. 2b.

The VAE utilises the concept of variational inference to
estimate the latent variable distribution. Given an observa-
tion, xi , the likelihood is given by p(xi |z). Using Bayes rule,
the posterior is given by p(z|xi ). However, the evidence,
p(xi ) = ∫

p(xi |z)p(z)dz, is intractable for highdimensional
problems, therefore, approximate inference is required. The
VAE relies on a variational distribution to approximate the
posterior qφ(z|xi ), where φ are parameters of a neural net-

work. The prior, p(z), can be set to be an isotropic Gaussian
distribution, encouraging the posterior to take a Gaussian
form acting as a regulizer. Similarly, the likelihood is given
by a generative network pθ (xi |z), where θ are the parameters
of a neural network.

Therefore, since the Kullback–Leibler (KL) divergence is
always greater than or equal to zero between the true and
approximate posteriors, by Jensen’s inequality, maximizing
the Evidence Lower Bound (ELBO) is equivalent to min-
imizing the KL divergence. The objective function is then
given by (Kingma and Welling 2013):

L(θ, φ; xi ) = − KL(qφ(z|xi )‖p0(z))+ Eq
[
log pθ (xi |z)

]
.

(2)

Anomaly detection can be applied in a number of ways.
Firstly, the reconstruction term can be used to compare the
input and output of the model. However, novel images can
be reconstructed in unexpected ways and therefore may not
always be detected (Denouden et al. 2018). Additionally,
the KL divergence can be used as another measure. More
recently, the Mahalanobis distance has also been used for
out of distribution detection (Denouden et al. 2018). This
is a method of calculating the distance from a pre-defined
distribution. The Mahalanobis distance is described as:

D2 = (zt− z̄)T Σ−1(zt− z̄), (3)
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where z̄ and Σ are the optimal mean vector and covariance
matrix, while zt is the sampled variable. The Mahalanobis
distance is the foundation of the Hotelling T 2 statistic, which
has been applied to in-situ monitoring in AM (Grasso and
Colosimo 2017).

TheMahalanobis distance can be calculated directly from
the latent variables of the VAE. However, Principal Com-
ponent Analysis (PCA) can also be applied to calculate a
reduced dimensionality, which is widely applied in process
monitoring on higher dimensional data (Kourti andMacGre-
gor 1995). The PCA reconstruction error, also referred to as
the Square Prediction Error (SPE), can then be used to detect
any out of distribution data (Kourti and MacGregor 1995).

In the present study, the latter approach was applied to the
VAE benchmarkmodel, where the β-VAE implementation is
followed (Higgins et al. 2016). PCAwas applied to the mean
of the latent variables of the training data, where 99.9% of the
variance was preserved. The Mahalanobis distance was then
calculated using the preserved n components. The resulting
error metrics calculated at each time step are the D2 score,
SPE, KL divergence and VAE reconstruction error.

Variational recurrent neural network

The graphical illustration of a first order SSM can be seen
in Fig. 2c. The introduction of latent variables overcomes
the severe limitations of the AR model, similar to the VAE,
where a higher level abstraction can be achieved. If the latent
variables are considered Gaussian then the SSM becomes
the linear dynamical system leading to the Kalman Filter,
while the discrete case results in the Hidden Markov Model
(HMM) (Bishop 2006).

RNNs have more expressive power than the linear SSM
structure and are capable of modelling complex sequences
with longer time dependencies (Chung et al. 2015). TheRNN
can be considered as a non-linearmapping,which recursively
processes a sequence while maintaining a hidden state, h:

ht = fθ (xt−1,ht−1). (4)

However, the internal state of the RNN is fully determin-
istic and the output is limited to modelling simpler unimodal
and bimodal distributions. This can be inappropriate when
the model is highly structured and complex relationships
exist between outputs in time (Chung et al. 2015). Conse-
quently, additional stochastic terms can be used to model
the uncertainty in the dynamics, which motivates the VRNN
(Chung et al. 2015). Since the VAE is capable of modelling
complex multi-modal distributions, the same idea can be
applied to the SSM. Subsequently, complex relationships
between the latent random variables can be modelled across
time with the RNN. This has shown to improve modelling
accuracy while preserving efficiency (Buesing et al. 2018).

The graphical model of the VRNN can be seen in Fig. 2d.
The deterministic nodes are modelled with a RNN. Since the
images are high dimensional, an embedding is formed with
an encoder, ϕx

τ (xt ), for example a CNN. Additional neural
networks map inputs (ϕu

τ (ut )) and states (ϕz
τ (zt )), resulting

in the following RNN:

ht = fθ
(
ϕx

τ (xt−1), ϕ
z
τ (zt−1), ϕ

u
τ (ut−1),ht−1

)
. (5)

The new hidden state, ht , can then be used to predict the
probability distribution of next state, p(zt |x<t ,u<t , z<t ), or
combinedwith the latest observation to estimate the new state
distribution, q(zt |x≤t ,u<t , z<t ), resulting in the variational
lower bound:

L = Eq

[
T∑

t=1

(
log p(xt |z≤t ,u<t , x<t )

−αKL
(
q(zt |x≤t ,u<t , z<t )‖p(zt |x<t ,u<t , z<t )

))
]

.

(6)

Additionally, the term α is applied to allow the model to
become semi-supervised:

α

{
0 α /∈ S
1 α ∈ S

(7)

where S is the set of optimal dynamics, determined through
ex-situ characterisation. With all values of α set to 1, the
VRNN model is recovered, all observations are considered
optimal and the model becomes self-supervised. Therefore,
the prediction error is only calculated for the labelled inputs,
while the model can still improve state representation by
having access to more varied data. Finally, the regularization
term from (2) is also added.

Furthermore, the reconstruction error in this work is
affected by the pulsing of the laser. This requires the signal to
noise ratio (SNR) to be taken into account. The reconstruction
error in (6) can be calculated bymaximum likelihood estima-
tion (MLE). This is normalised by the mean pixel intensity
to give the normalised mean square error (NMSE):

NMSE =
T∑

t=1

1

x̄t
||xt − x̂t ||2, (8)

where x̄t is the mean pixel intensity. This increases the
penalty at low SNR images encouraging learning of the fast
dynamics.

The model follows the implementation from Chung
et al. (2015) and Buesing et al. (2018) but differs in that
the deterministic hidden state is not used in the recon-
struction of the image. Instead, only an indirect path
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Fig. 3 A schematic diagram of
the FlawNet model. The
sequence of observations is
embedded into latent space,
where a dynamics model
utilising an RNN is trained to
predict the next state distribution
based on previous observations.
A binary classification method
is then applied to the dynamic
signature to detect out of
process distributions

exists through the latent random variable. This adds addi-
tional regularization to the model. The reconstruction term
can be useful in facilitating state representation. How-
ever, there are redundant states that are not essential for
dynamics predictions in this application. This, therefore,
facilitates a simpler, more general and transferable solu-
tion.

The model architecture can be seen in Fig. 3. A CNN
encoder is used to reduce the dimensions of the images at
each time step into latent space. The melt pool states are
then calculated, both with observations (z) and without (ẑ).
The difference between each state distribution is minimised
with the KL divergence term to facilitate accurate predic-
tions. A gated recurrent unit (GRU) is used as the RNN
(Cho et al. 2014). Meanwhile, the reparameterization trick
allows the calculation of gradients through backpropagation
which is similar to the VAE (Kingma and Welling 2013). A
generative network, composed of transposed convolutions,
is then sampled and the reconstruction error is calculated
using (8). Finally, the model is optimised using the lower
bound from (6). The inference and generative networks are
the same for both the VAE and the FlawNet model in this
study. The encoder and generator architectures are shown in
Table 1, an adaptation similar to many VAE network archi-
tectures, see e.g. (Ha and Schmidhuber 2018). The neural
network models were implemented in PyTorch (Paszke et al.
2019).

VRNN for anomaly detection

In this paper, several scores are used to detect anomalies at
test time. The prediction and reconstruction terms are used
from (6) as well as the regulizer term. Furthermore, a multi-
step prediction error is computed at every time step. This
involves predicting ahead N steps, where the KL divergence
is computed between the observed and predicted state at each
step:

Rt =
N−1∑

i=0

KL
(
q(zt |x≤t−i ,u<t−i , z<t−i )‖

p(zt |x<t−i ,u<t−i , z<t−i )
)
, (9)

where N is the number of steps predicted.
Once scores are computed by the model a simple deci-

sion boundary is calculated to demonstrate the effect of the
dynamic signature. Specifically, Logistic Regression is used
to automate the decision boundary calculation. A statistical
test such as the Hotelling T 2 could be used in the absence
of sub-optimal data, however, an empirical boundary gives
more flexibility in adjusting the trade-off between true and
false positive rates.

Experiments

Experimental setup

The aim of the experiment was to test whether quality degra-
dation could be detected with the model and to ascertain the
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Table 1 Encoder and generator
network architectures

Network Layer Channels in Channels out Kernel size Stride Activation

Encoder conv1 2 32 4 1 ReLU

conv2 32 64 4 2 ReLU

conv3 64 128 4 2 ReLU

conv4 128 256 4 2 ReLU

fc1 256 35 – – –

Generator fc2 35 512 – – –

deconv1 512 128 3 1 ReLU

deconv2 128 64 3 2 ReLU

deconv3 64 32 2 2 ReLU

deconv4 32 2 2 2 –

level of granularity. To simulate this, the focus height of the
laser was adjusted from the optimal value, 0 mm, in both
directions. This was then expected to cause an increase in
the porosity of the samples. Adjusting focus also mimics
the potential adverse effects of thermal lensing, where laser
focal shift may change due to heating of focal elements of
the machine (Goossens et al. 2018). The degradation was not
expected to be symmetrical since the laser-material interac-
tion varies depending on the defocus direction (Metelkova
et al. 2018). The AM machine in this work is a Renishaw
AM250 which utilises a modulated continuous wave laser
system. The parameters followed the manufacturers pre-
set optimal parameters (laser power, 200 W, point distance,
60µm, exposure time, 80µs) for thematerial (316L stainless
steel).

The experimental setup involved the printing of 5 mm
diameter cylinders at nine focus heights. The experiment was
repeated three times and is referred to as Build 1, 2 and 3.
Therefore, there were 27 cylinders in total, where each focus
height had three samples. The focus heightwas adjusted from
−20 to 12 mm in increments of 4 mm. This meant that the
process would traverse the optimal region, from instability
through marginal and optimal stability, then return to insta-
bility. The stable region is known as the process window in
AM literature (Fig. 4) (Grasso and Colosimo 2017).

Build 1 was used for training the model as well as setting
decision boundaries for the binary classifiers. Meanwhile,
Build 2 and 3 were utilised as validation and test sets. The
position of each cylinder was randomized between each
experiment to prevent this becoming a confounding vari-
able. The separation of data was important in analysing the
transferability of the model to new data. It was expected that
processing conditions may vary for different types of geome-
tries, due to the different processing variables. For example,
it has been shown that inter-layer cooling time may have an
effect (Williams et al. 2019). However, the present study con-
trolled for geometric variation, which may be considered a
limitation compared to true build conditions.

Fig. 4 The laser focus was adjusted between − 20 and 12 mm, where
each experiment was repeated three times. No significant difference
was found between porosity for − 4, 0, 4 and 8 mm, therefore this was
consideredwithin the processwindow.Meanwhile, the other parameters
were considered unstable. In addition, − 4 and 8 mm were considered
marginally stable

The parameter groupingswere based on an empirical anal-
ysis of thematerial quality. Thematerial qualitymetric that is
widely used in AM is porosity (Ronneberg et al. 2020). Each
sample’s porosity was assessed from optical micrographs
(Hirox RH-2000 with MXB-5000REZ lens at 600× optical
zoom stitched, Fig. 5). This resulted in a total of nine focus
height groupings containing three samples each. A Shapiro–
Wilk test for normality and an independent samples t-test or
non-parametric equivalent was used to compare the optimal
parameter cylinder, 0mm, individually to the other cylinders:
−20, −16, −12, −8, −4, 4, 8, and 12 mm. There was no
statistically significant difference found between 0 mm and
−4, 4 and 8 mm, p ≥ 0.05. There was a statistically signif-
icant difference found between 0 mm and −20, −16, −12,
−8, 12 mm, p < 0.05.

The above analysis formed the basis for four parameter
groupings and three comparative tasks (Table 2). The first
group compared stable versus unstable, which can be thought
of as within and outside the process window. In addition, two
other groups were added. 0 and 4 mm were considered opti-
mal while −4 and 8 mm were considered marginally stable.
Therefore, task 2 considered optimal versus stablewhile task
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Fig. 5 Selected example of micrographs from three different focus heights illustrating quality degradation and porosity increase as laser is
defocussed: a 0 mm, b −8 mm, c −16 mm

Table 2 Four groups of laser parameters considered

Group Focus (mm) Mean porosity (%) Std. dev.

Optimala [0, 4] 0.092 0.044

Stable [−4, 0, 4, 8] 0.112 0.055

Marginala [−4, 8] 0.133 0.057

Unstable [−20, −16, 8.623 7.418

−12, −8, 12]

aNo statistically significant difference

3 considered optimal versus marginal. This boundary was
considered marginal since these parameters were closest to
unstable and therefore, potentially detectable.

The performance of the binary classifiers are evaluated
with the receiver operating characteristic (ROC). The true
positive rate (TPR) and false positive rate (FPR) are calcu-
lated for a set of decision thresholds giving FPR and TPR as
a function of the threshold. The area under curve (AUC) is
typically used to summarise this in a single number, where a
score of 0.5 indicates a random guess. This metric is widely
used when evaluating binary classifiers (see Murphy 2012
for an overview).

Data pre-processing

The data were captured from a single layer of the cylinder.
The images from each camera were initially 128 × 128 pix-
els in size. These were cropped to 28× 28 pixels around the
peak intensity. The image intensities were also normalised
by the bit depth (212). The images were then divided into
sequences. Each 5 mm diameter layer resulted in approxi-
mately 38,000 frames. These were divided into sequences of
20 frames giving 1900 sequences.

At test time, each of the 38,000 frames then had its asso-
ciated anomaly features, depending on the model. A moving
average of each featurewas calculated depending on the reso-

Table 3 ROC AUC for three anomaly detection tasks

Build Task 1a Task 2b Task 3c

Build 2 (validation) 0.9873 0.9992 0.9489

Build 3 (test) 0.9829 0.9996 0.9390

aStable versus unstable
bOptimal versus unstable
cOptimal versus marginal

lution requirement. The results show a nine time stepmoving
average unless stated otherwise. This was equivalent to a sin-
gle laser pulse or 90 µs.

The input data, u, in these experiments was the laser
power. The power was sampled with a picoscope (PicoScope
5444) at 1 MHz. A filtering operation was carried out with
low pass Finite Impulse Response (FIR) filter with a cutoff
frequency of 100 kHz. The signal was then downsampled to
match the video data at 100 kHz. The power data was then
normalised by the maximum power of 200 W.

Results

The model performance across three tasks can be seen in
(Table 3). The most clear distinction arose between the opti-
mal and unstable parameters, with a mean AUC ROC of
0.9994. This reduced slightly on differentiating parameters
that were stable and unstable, where an AUC of 0.9851 was
achieved. Finally, the more challenging task of distinguish-
ing between optimal and marginal groups resulted in a mean
AUC of 0.9440.

A comparison between the three models across the three
tasks is shown in Fig. 6. In task 1, FlawNet, VAE and linear
models achieved anAUC 0.985, 0.916, 0.871 respectively. In
task 2 this increased by 1.4% to 0.999 for FlawNet and 11.9%
to 0.975 for the VAE. It reduced by 4.6% to 0.874 for the
linear model. In task 3 FlawNet achieved 0.944 decreasing
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Fig. 6 Comparison of three
different models across three
different tasks

Fig. 7 ROC curves from a
one-versus-one validation,
where the optimal model from
task 2 and 3 is scored
individually against each
material sample. a Unstable
samples have a clear decision
boundary. Due to the high value
of the macro AUC (0.9994),
four samples are highlighted on
a semi-log axis to fully
investigate the limits of FPR. b
Marginal samples are more
difficult to distinguish compared
with unstable. This is due to the
high material quality of these
samples which becomes
apparent at lower levels of FPR

(a)

(b)

by 4.2% compared with task 1.Meanwhile, the VAE reduced
by 5.7% to 0.821 while the linear model reduced by 36.3%
to 0.555 compared with task 1.

Figure 7 shows a number of ROC curves for the opti-
mal parametermodel versus individual focus height samples.
Firstly, in Fig. 7a, the unstable group shows four ROC curves
highlighted of the 10 samples indicating limits of TPRs for
a range of FPRs. At 0.01, the TPR is 0.987 ± 0.010. As

the FPR reduces to 0.001 the TPR is reduced by 2.5% to
0.962 ± 0.027. Finally, as the FPR is reduced to 0.0001, the
lower end of the TPR drops below 0.5, dropping by 28.4%
to 0.689 ± 0.287. In the marginal group, Fig. 7b, the four
samples from Build 2 and 3 are shown. At an FPR value of
0.5, the TPR was 0.978±0.014. This decreased by 15.5% to
0.826±0.037 at 0.1. At 0.01, the value decreased by another
27.5% to 0.599±0.101. Finally, at an FPR of 0.001, the TPR
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Fig. 8 Dynamic signature
compared with porosity. The
dynamic signature is more
sensitive to ultra-dense
components, before the onset of
porosity. Meanwhile, after
porosity onset, a strong
correlation is observed between
the dynamic signature and
porosity

Fig. 9 Trade-off between increasing number of samples and reducing
resolution is shown with FPR taken at 0.999 TPR. Maximising TPR is
a potential requirement for critical applications

drops to levels which would result in more false detections
in the positive class, at 0.368 ± 0.146.

The dynamic signature was investigated further as a lone
metric since it had highest feature importance. This revealed a
positive correlation between porosity and the mean dynamic
signature of the layer. Figure 8 shows the mean dynamic sig-
nature for each build, where samples are taken from the onset
of porosity, i.e. the unstable group. This revealed a strong lin-
ear relationship between the dynamic signature and porosity,
with an R2 value of 0.904. The onset was only achieved at
12 mm, therefore, more data is required to see if it is also
linear in the positive direction.

Tobetter understand the potential granularity of themodel,
Fig. 9 shows a comparison of resolution, when detecting dif-
ferent porosity amounts at 0.999 TPR. For very low porosity,
around three laser pulses were required to achieve an FPR
below 0.1. Meanwhile, for higher porosities, a single laser
pulse was required.

To investigate the critical components of the model, an
ablation study was conducted, where several critical compo-
nents of the networkwere systematically removed. The input,
multi-step prediction (MSP) and semi-supervision (SS) com-
ponents were removed individually (Fig. 10a). Compared
with FlawNet in task 1, a reduction of 2.9%, 0.7% and 6.7%

can be seen when removing the input, MSP and SS respec-
tively. Similarly for task 2, very little change was observed
when removing the input and MSP (0.3%, 0.1%), whereas
removing SS resulted in a larger reduction (5.5%). Finally,
task 3 saw a slight difference of 5.0% and 3.9%when remov-
ing the input and MSP, whereas a large change of 24.8% was
observed when removing SS.

Removal of semi-supervision resulted in a large reduction
in performance. This is explored in Fig. 10b. The peak image
intensities were compared between the true image (x), the
input (u), and reconstructed images of the predicted poste-
rior (ẑ) and observed posterior (z) based on 50MCsamples of
the generative model and an error of one standard deviation.
Firstly, the states are better represented in the low amplitude
regimes which was important for capturing fast dynamics.
Secondly, the observationmodel was better capable of recon-
structing the intensity of low signal images.

Discussion

There were two key factors that contributed to the model’s
performance: predictive accuracy and state representation.
The better state representation results in a better ability to
model variability, which became apparent with the inclusion
of the additional anomalous data. This allowed the model to
improve since a larger variety of data was available (Halevy
et al. 2009). Furthermore, there is better representation of the
low signal states, where the cooling rate is captured. Since
cooling rate is a good indicator of the process being in con-
trol, it is important to capture it in this application (Hooper
2018). The predictive accuracy is also important since this
is needed to compute the dynamic signature. However, for a
high performing model, the predictions should better match
the optimal dynamics, rather than the observed state. The
model prefers to base predictions on the input parameter over
the previous observations. This is apparent from the perfor-
mance degradation when removing the input in the ablation
study. Therefore, the model should be capable of strong
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Fig. 10 a Ablation study of
FlawNet, where the input,
multi-step prediction (MSP) as
well as semi-supervision (SS)
were systematically removed. b
Comparison of models trained
with and without
semi-supervision. Two
improvements can be seen: (1)
The ability to represent low
amplitude regimes important for
fast dynamics. (2) Improved
reconstruction of sub-optimal
process data, essential for
detecting an anomalous
dynamic signature

(a)

(b)

predictive posteriors weighted towards optimal conditions,
while the observed posterior should follow the observation
closely.

To further elucidate this result, the resolution was com-
pared at differing numbers of samples (Fig. 9). A rapid
convergence resulted from the sequential errors becoming
more independent compared to assuming i.i.d. data. Since
predictive errors will take on a randomness with respect
to time, fewer samples are required to improve accuracy.
However, when the correlation is not accounted for this
assumption does not hold and a larger FPRwill result (Alwan
1992). Since the laser modulates at regular frequency, the
resulting variability is part of the process and not anoma-
lous. Hence, needs to bemodelled to account for the resulting
seasonality. The autocorrelation is, therefore, an important
consideration in many industrial problems such as AM and
the improved results agreewith processmonitoring literature,
where a predictive model is used (Montgomery 2007). This
has not been feasible in many industrial applications with
high dimensional non-linear dynamics and would suggest an
effective predictive model for this application domain.

The model was also robust to non-linearity in the captured
data. The laser modulates at a very high frequency of around
11 kHz. However, the off-time is much shorter, lasting only
10 µs. This is the same as the camera frame rate and there-
fore greater than the Nyquist criterion, i.e. the off-pulse lasts
for 10 µs while the camera sample spacing is 10 µs. There-

fore, a mild aliasing effect occurs between pulses and creates
additional non-linearity. This does not seem to have degraded
results for this experiment. It is thought that this was aided by
accounting for the uncertainty in the model, where explicit
modelling of uncertainty improves accuracy (Buesing et al.
2018).

A key advantage of the system is that no hand labelled data
is required, automating the learning of dynamics. Beyond
the ex-situ characterisation of the optimal parameter, new
data can be added as it becomes available. Similarly, semi-
supervised prediction of single tracks has been reported in
AM (Yuan et al. 2019). However, the method required more
complex characterisation than porosity to achieve labels,
whereas this method only requires the input power as the
label. Therefore, the present method is easily adapted to
current industrial monitoring systems. Furthermore, since
system performance improves with the use of additional
unstable process parameters, it indicates the model’s poten-
tial to improve over time as more data is collected. This is
importantwhen scaling themodel, where datamay be needed
for additional process parameters and inputs.

The model also performed well when distinguishing
betweenhighly dense, yet unstable,materials. Themodelwas
capable of differentiating between parameters that produce
0.09± 0.04% and 0.21± 0.02% density, achieving an AUC
of 0.999. The results indicate the potential to detect changes
at a level of 0.1% porosity. This is approaching the level
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required for monitoring of the microstructure. This would
open up a large potential for AM combined with monitor-
ing systems, where microstructure could be locally tailored
within the material. Control of microstructure can therefore
reduce the need for post-processing and speed up the qual-
ification of the final component (Gockel and Beuth 2013).
This is a strong indicator of the granularity of the system,
however, adjustment of additional parameters is required to
confirm this finding.

Meanwhile, false detectionswere significantly reduced for
the unstable parameters (Fig. 7). The system performed well
to an FPR of 0.001, maintaining a TPR of 0.962 ± 0.027,
with predictions made from nine frames or one laser pulse,
equating to around 12,600 data points in total when compar-
ing the two optimal samples against the defective sample for
that build. This would indicate a system which has potential
to maintain usefulness at locating defects at high resolution,
evenwith respect to rarely observeddefects, at approximately
4 false positives per layerwith no defects present. The dataset
in this study was not large enough to fully evaluate lower
levels of FPR but performance appears to greatly decrease
at 0.0001. Porosity is a rare event, hence most detections
will be in the negative class. Therefore, even at this level the
FPR may be unacceptably high, suggesting larger datasets
are needed to better understand these ramifications. The data
points in an entire build would easily reach 106. Hence, eval-
uation datasets need to be at least this size or larger to fully
characterise the system.

Similarly, the model is also capable of high resolution
while maintaining 99.9% TPR (Fig. 9). This is an impor-
tant requirement in critical applications, where a single false
negative could be dangerous. Therefore, it becomes impor-
tant to have high confidence in the system, even at the cost
of increased false positives. However, it was also shown that
this may come at a cost of resolution. Higher porosity val-
ues typically needed one to three laser pulses to achieve sub
10% FPR while maintaining 99.9% TPR. Meanwhile, lower
porosity material (i.e. −8 mm and 12 mm) needed three
pulses or more. Given that a relatively small 5 mm cylinder
of these experiments had around 38,000 captured images, if it
is crudely assumed that nine samples is equivalent to onemelt
pool and the material has 0.1% porosity, an estimate would
be to consider that four melt pools were anomalous. With a
10% FPR, the system correctly detects approximately 1 in
100 samples and is overwhelmed by false positives. Hence, a
trade-off between resolution and FPR needs to be made. The
results from this work would suggest that additional systems
would be required to accurately and repeatably locate flaws
below 150 µm in size. However, additional spatial correla-
tions in the x, y and z directions may also improve this result
if data was captured over multiple layers.

Though the model performed well in the first two tasks
tested, performance reduced slightly in the optimal vs.

marginal task. Thiswas due to the challenge of differentiating
signatures at near optimal conditions in ultra-dense materi-
als. Since, at least some of the time, the marginal parameters
are in the optimal high density regime, there is unavoidable
reduced performance. However, this high performance is a
good sign for early detection of the onset of increased vari-
ability. This is highly useful in a monitoring system since
an early warning could allow corrective action. Parameters
could then be adjusted if there is the onset of variability due
to specific geometrical features. This is a key requirement of
future research in AM (Debroy et al. 2019).

There was a clear trend observed between porosity and
the mean dynamic signature for the layer. This would sug-
gest that global properties can be inferred very accurately,
in the context of parameter selection. Since each cylinder
layer has around 38,000 time steps, the mean of the dynamic
signature will approach its population mean for that experi-
ment. Therefore, this study indicates the dynamic signature
to work well as a global quality metric. This is useful in
the context of optimising parameters for a new material or
a challenging geometry. Instead of taking the time to mea-
sure porosity or conduct destructive test, the monitoring data
could be directly used to estimate the quality. This could
enable automated material development, rapidly increasing
the pace at which new material parameters could be found.

There are no public benchmarks for AM. However, in
comparison to other recent work in AM anomaly detection
the model achieved state-of-the-art results. Mitchell et al.
(2020) utilised features from high speed images and applied
outlier detection using a k–d tree. This is an effective method
but at lower porosity the model FPR was between 23% and
58%. In comparison, this work indicates the potential to
locate material degradation at lower FPR even while main-
taining 0.999 TPR, though more data is required to quantify
this to localisation. Jayasinghe et al. (2020) were capable of
differentiating porosity below 99% with an AUC of 0.946
using three photodiodes. This is equivalent to−8 mm unsta-
ble parameter in the present work, where a mean AUC of
0.999was achievedwith a single laser pulse. Thiswould indi-
cate the advantage of cameramonitoring, allowing additional
information to be utilised. However, the present method is
also highly suitable for this type of sensor.

A limitation of the study was that the part geometry was
fixed. Thoughmany experiments in AMuse only single track
experiments, this study has gone one step further where solid
material was considered. However, complex geometries may
cause new types of dynamic signatures, which arise due to
changes in the melt pool state. The present study achieved
high performance without requiring the modelling of geom-
etry related inputs, e.g. the laser turning at the edge of a
geometric feature causes a change in velocity. However, it
is likely that highly complex geometries will require further
inputs that relate the melt pool to the geometry. Similarly,
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global surface temperatures are also likely to effect the melt
pool state. These areas were out of the scope of the present
study and are topics of an ongoing study.

Conclusion

In this study, a data-driven modelling paradigm, FlawNet,
was introduced tomodel the laser dynamics of theL-PBFpro-
cess directly from high speed images. The method exploits
the correlations between observed images and the laser input,
as well as the time-series correlations between images to
reduce the rate of false detections. A novel monitoringmetric
known as the dynamic signature was introduced to facilitate
this aim. Themodel was tested on various porosity levels and
demonstrated state-of-the-art results with an ability to differ-
entiate between optimal processing and defective materials
down to 0.2% porosity with an AUC of 0.999. Furthermore,
the model was capable of distinguishing between process
signatures at porosity levels of 0.1% with an AUC of 0.944.
The model is a useful tool for predicting both local and part-
wide porosity which has application in parameter selection
and in-situ quality control. The model also demonstrated a
potential to detect the early onset of material degradation
allowing potential corrective action to be taken. The dynamic
signature presented adds an important metric to the AM flaw
detection toolbox and the FlawNet model brings about a sig-
nificant leap towards in-situ quality control.
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