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Abstract
This article presents a novel approach for the automated 3D-layout planning of multi-station assembly lines. The planning
method is based on a comprehensive model of the used production resources, including their geometry, kinematic properties,
and general characteristics. Different resource types can be included in the planning system. A genetic algorithm generates
and optimizes possible layouts for a line. The optimization aims to minimize the line’s area and the costs for assembling the
line while simultaneously optimizing the resources’ positioning to perform their tasks. The line’s cycle time is considered as
a boundary condition. For the evaluation of different layout alternatives, a multi-body simulation is performed. A parameter
study is used to set the algorithm’s parameters. Afterward, the algorithm is applied to three increasingly complex examples
to validate and evaluate its functionality. The approach is promising for industrial applications as it allows the integration of
various resource types and individualization of the optimization function.

Keywords Layout planning ·Assembly line design · Layout optimization ·Genetic algorithm · Production resource modelling

Introduction

Today automated assembly lines are commonly used to
manufacture products. The spatial positioning of production
resources has a crucial influence on the planned system’s
quality and is a significant step in designing a new line
(Bullinger, 1986). The ideal layout is highly dependent on
the used resources and their characteristics (like kinemat-
ics), especially if they need to access the assembled product
to perform their task. For example, an assembly station
might contain multiple robots that have to access the product
sequentially and a camera to visually monitor the performed
processes simultaneously. Another challenging factor is the
flow of material and the transport of the product from one
station to the next end which needs to be ensured. Tradi-
tional planning methods rely on the planner’s expertise and
do not use objective criteria to optimize the layout. Manually
arranging the resources is also a time-consuming process,
whose automation offers the potential to decrease the neces-
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sarymanual effort during the planning process (Michniewicz
et al., 2017).

There are numerous approaches for the automated plan-
ning and optimization of the site layout, i.e., the placement of
individual areas and facilities on the factory floor. This prob-
lem is known as the Facility Layout Problem (FLP) and the
aim is to determine themost efficient layout. Studies address-
ing the FLP consider the creation of a 2D layout, where
the elements to be arranged are represented by rectangles
or polygons (Drira et al., 2007, p. 255; Hosseini-Nasab et al.,
2018, pp. 957–958). For the detailed design of an assem-
bly line, the level of abstraction used in FLP is too high, as
the individual resources within the line’s stations must be
regarded and positioned. Automating this planning step is
one of the biggest challenges in the automation of assem-
bly system planning (Michalos et al., 2015, p. 86). Various
researchers have addressed the automated positioning of pro-
duction resources. Substantial work has been done regarding
the positioning of industrial robots and sensors (Pellegrinelli
et al., 2017; Zeng et al., 2020). However, automatically gen-
erating a viable three-dimensional layout of a production line
remains a challenge (Michalos et al., 2015, p. 86).

In this article, we present a method for automatically
generating and optimizing three-dimensional layouts for
assembly lines. It is based on a resource library with digital
models of the available production resources. These models
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contain the resources’ relevant properties, including eco-
nomic characteristics like their price and technical features
like a description of their workspace.

The article is structured as follows: after this introduction,
in Sect. 2, related literature is presented. Then in Sect. 3, the
optimization problem is formulated, and the planning sys-
tem’s components are introduced. Section 4 describes the
resource library and the modeling of the resources. Sec-
tion 5 deals with the algorithm to optimize the layout. Next,
in Sect. 6, a parameter study is conducted to determine an
appropriate configuration of the algorithm’s parameters. In
Sect. 7, the presented concept is then applied to three exam-
ples to validate and evaluate its functionality. Finally, Sect. 8
formulates a conclusion and gives an outlook on further top-
ics of research.

Related works

Different researchers have focused on optimizing the spatial
layout of production resources and production areas in a pro-
duction system in the past. In the research domain of Facility
Layout Problem (FLP), various target criteria, such as mate-
rial flow or expected reconfiguration costs, are optimized.
Boundary conditions such as the shape and size of the avail-
able production areas or the type of handling system used are
also considered. (Drira et al., 2007, p. 255; Hosseini-Nasab
et al., 2018, pp. 957–958). Resent contributions to the field
include the work of Gülşen et al. (2019), Mohamadi et al.,
(2019a, 2019b), Liu et al. (2021), and Besbes et al. (2021).

The existing FLP research can be classified according to
different aspects of the presented problems. Hosseini-Nasab
et al. (2018) present a classification scheme that considers
layout evolution (static/dynamic), workshop characteristics,
problem formulation and solution approach. Pérez-Gosende
et al. (2021) extend this categorization by also including the
problem type (greenfield/re-layout) and the planning phase
(block layout/detailed layout). They also sub-divide the cat-
egory of workshop characteristic into facility characteristics
and materials handling system configuration.

In the taxonomy of Pérez-Gosende et al. (2021) the prob-
lem presented in this article would be static (meaning that
the generated layout does not change over the lifetime of
the manufacturing system), greenfield, detail layout, single
facility, single floor with 3D space consideration. However,
these characteristics are highly unusual for a FLP. In fact,
the developed approach does not correspond to the classical
definition of a FLP as it focuses on individual resources and
their 3-dimensional positioning including the simulation of
their kinematics.

Earlywork on a similar problemwas done byWoenckhaus
(1994) and Woenckhaus and Milberg (1993) who present a
system for 3D layout optimization of assembly cells with

different types of resources. In these publications, resources
like robots, sensors, and humans, are positioned. Passive,
structural elements are also considered. The initial layout is
created by the user and then automatically evaluated and iter-
atively optimized. For the layout evaluation, a 3D simulation
environment is used.

Roßgoderer et al. (1995) further develop this approach
by also generating the initial layout automatically. For this
purpose, they define functional surfaces and model the rela-
tionships between the cell components in a structural layout.
Reinhart and Roßgoderer (1998) integrate automated robot
path planning into the planning system and plan human
movements interactively in a Virtual Reality (VR) environ-
ment. Roßgoderer (2002) further improves the system and
presents a three-step planning method for 3D layout plan-
ning of hybrid assembly systems. The resources aremanually
linked to define the structure of an assembly station, and the
assembly process to be performed is specified manually. A
3D simulation model and the necessary robot movements
are generated automatically. Manual motion sequences are
entered interactively using input devices from the field of
VR. By modifying the remaining degrees of freedom, the
layout is optimized.

Leiber et al. (2019) and Michniewicz et al. (2017) present
concepts for comprehensive planning systems. Besides the
layout generation, these systems include selecting produc-
tion resources and balancing the line. However, the systems’
implementation and evaluation are not described. Leiber and
Reinhart (2020) build on the concept and present, implement,
and evaluate a system that integrates assembly line balancing
and 3D layout planning into one bi-level optimization prob-
lem. They focus on the nested optimization and simplify the
problemby representing production resources through cubes.

However, many works dealing with the positioning of
resources that focus either on the positioning of industrial
robots or the optimal positioning of optical sensors can be
found. The following two sections provide an overview of
these two areas of research.

Positioning of robots

A constructive approach for the automated design of robot
cells is presented by Lueth (1992). The components are
placed one after the other in the cell, testing and ensuring
the layout’s validity at each step. The approach considers
collision freedom and the accessibility of the workpiece as
constraints. The optimization criterion is the length of the
robot trajectories necessary to perform the defined tasks.
Barral et al. (2001) also use a constructive approach for the
automated design of an assembly cell layout and combine it
with a simulated annealing algorithm.Machines are arranged
one after another in the vicinity of a fixed robot. The objec-
tive of the optimization is the minimization of the cycle time.
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Barral (2002) and Barral (2003) also utilize this approach.
Another method to positionmultiple workstations in an auto-
mated cell, which are approached by an industrial robot in
a given order, is introduced by Zhang et al. (2013). In this
work, a segment of the robot workspace is defined as particu-
larly advantageous. The optimization aims to ensure that the
manipulated workpieces are in or as close as possible to this
area. Tubaileh (2014) optimizes the positioning of machines
in a robotic cell as well. The goal is to minimize the time
the robot needs to reach them in a given order. The robot’s
kinematic properties are taken into account, and the plan-
ning result is validated using 3D simulation. Sharma et al.
(2017) address the problem, by creating point cloud models
of robots and other objects in the cell based on CAD data.
Subsequently, the objects’ positioning and orientation in a
robot cell are optimized using a simulated annealing algo-
rithm. The optimization criterion is the minimum movement
of the robot axes.

Other works specifically address planning scenarios with
multiple robots. Papakostas et al. (2011) deal with the
planning of cooperating robots in the automotive industry.
Different alternatives regarding positioning and path plan-
ning are generated and evaluated based on amanually created
initial solution. Papakostas et al. (2014) extend the approach
by including the selection of resources based on rules and
previously used solutions. Pellegrinelli et al. (2014) focus
on the design of multi-robot cells specifically for spot weld-
ing applications. They use a multistage process that includes
the selection, positioning, and path planning of the robots.
First, the individual robots are considered and then interac-
tions between the robots are taken into account. Pellegrinelli
et al. (2015) and Pellegrinelli et al. (2017) further develop this
approach and validate it using various application examples.
Suemitsu et al. (2016) develop another method for planning
cells with more than one robot. Their approach is based on
the work of Izui et al. (2013) and Lim et al. (2016). Izui et al.
(2013) present a multi-criteria optimization problem for the
automated layout planning of robot cells. The optimization
considers the minimization of the required area of the layout
and the cycle time, as well as the maximization of the robot’s
manipulability to prevent it from approaching a singular axis
position. A genetic algorithm is used to solve the problem.
Lim et al. (2016) then compare different heuristic algorithms
to solve the optimization problem. An additional planning
criterion for the layout planning is regarded by Wang et al.
(2020) who consider the aspect of safety while optimizing
logistical cost and layout area of the planned assembly line.

Positioning of sensors

Many of the existing methods for the positioning of sensors
have the determination of a suitable set of sensor poses to
fulfill a specific task as their goal (Chen et al., 2008, p. 39).

This is necessary because the measurement volume of sen-
sors often only covers part of the target object and because
one view is often not enough to create a 3-dimensional
model of a physical body or capture all relevant features.
In the industrial context, a digital model of the measured
item usually already exists and the goal is to inspect specific
attributes in the context of quality control (Chen et al., 2008,
p. 2). This scenario is addressed by Trucco et al. (1997) who
present a planning system to calculate the optimal sensor
poses for defined inspection tasks. The optical sensor used
is specified beforehand, and a CAD model of the inspected
object is also available. Gronle and Osten (2016) integrate
the planning of measurement poses into a more comprehen-
sive assistance system for the inspection planning of surfaces
that also includes selecting a sensor and defining the sensor
parameters. Ellefsen et al. (2017) on the other hand present a
multi-objective optimization using an evolutionary algorithm
to determine a robot path to inspect a known structure. The
example application is an underwater robot for inspecting oil
rigs or offshore wind farms. The optimization objectives are
to minimize energy consumption, maximize coverage, and
minimize collisions. A problem similar to the inspection of
an object or feature is addressed by Rosman et al. (2018) who
are concerned with the pose planning of sensors to monitor
assembly tasks in the context of cooperating robot teams.

Another area of application of sensor pose planning is the
digitalization of items when only their approximate dimen-
sions are known. Since no information about the object
is available before starting the digitalization process, the
poses must be generated online during the process, based on
the information already available (Karaszewski et al., 2016,
p. 320). Karaszewski et al. (2016) evaluate and compare dif-
ferent algorithms for pose planning for this application. A
current example of such an algorithm is the work of Monica
and Aleotti (2018). Their approach is based on the represen-
tation of the environment by surface elements. The method
shows a better performance than systems based on a repre-
sentation by volume elements, with a comparable quality of
the created models. Besides these use cases for inspecting or
digitizing objects, Zeng et al. (2020) mention the digitization
of a scene that is not limited to a particular volume (in the
context of mobile robots) and the recognition, classification,
or localization of objects as scenarios in which sensor poses
have to be planned.

Need for research

Although the positioning of production resources has been
an active field of research for many years, the automated
generation of assembly line layouts can still be considered
an unsolved challenge. Most authors focus on positioning
one type of resource (industrial robot/optical sensor) for a
specific task. Some authors consider multiple resource types
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but are restricted to single assembly cells (Roßgoderer et al.,
1995) or simplify the layout planning problem substantially.
Therefore, a need for a layout planning system that considers
multiple types of resources and assembly lines with multiple
stations exists.

Problem definition and system overview

In this article, we present a solution approach for layout plan-
ning of multi-station assembly lines. The proposed approach
positions given resources in an assembly line based on a
multi-criteria optimization with an objective function ( 1)
that is dependent on the resource poses poseres , which are
determined during the optimization. The goal is to minimize
costs over the line’s lifetime.

(1)

min f (poseres) � α ·
∑

res

cmounting,res + β

· Aline + γ ·
∑

res

(1 − P Qres)

The first term of the objective function is the sum of
the resources’ mounting costs cmounting,res representing the
costs of assembling the line itself. The resources’ position-
ing influences these costs because some positioning options
(like overhead mounting of a robot) are more complex and
might require expensive support structures. The second term
includes the line’s area Aline since the occupied factory
area is associated with significant costs and therefore should
not be larger than necessary. The last term is based on the
resources’ pose quality P Qres , which quantifies the quality
of the resources’ positioning from a technical standpoint. The
definition of P Qres depends on the type of resource used (see
Sect. 0). The coefficients α, β und γ are included to allow the
user of the optimization system to weigh the terms accord-
ing to their individual preferences. Theymight depend on the
line’s location and the associated costs of space or the line’s
expected lifetime. The latter is important because while the
cost of assembling the line only occurs once, the lines’ area
and the resources pose quality have a continuous effect over
the line’s lifetime.

During the layout optimization, the following constraints
must be respected:

1. The absence of any overlap between the resources is nec-
essary for a feasible layout since several resources cannot
occupy the same space.

2. The reachability of the relevant area of the product
(region of interest, ROI) by the station’s resources is
another precondition for the layout’s functionality. If a
resource cannot reach the ROI, it cannot perform the nec-
essary manufacturing process.

Fig. 1 The proposed system for the layout planning of multi-station
assembly lines

3. Adherence to the required cycle time for the line has to
be ensured when designing a layout.

To solve the presented problem and automatically create
a viable assembly line layout, we propose a planning system
(Fig. 1).

Input information (1) is the structural information of the
line that contains a list of stations and their resources. For
each resource, it is also known where on the product the rel-
evant ROI is located. The layout planning system itself (2)
consists of three modules: the resource library (3) that con-
tains models of the used resources, the optimization module
(4) that creates and optimizes the layout of the line, and the
simulationmodule (5) that is needed to evaluate the quality of
generated layout candidates. Finally, the optimization result
is a virtual model of the line’s 3D layout (6).

Resource library andmodeling of resources

The proposed resource model contains all the characteris-
tics of the resources necessary for the automated layout
design. The optimization module then uses the models in
the resource library to create different potential layout solu-
tions that are evaluated using the simulationmodule. Figure 2
gives an overview of the four main aspects of production
resources included in the model. First, geometry is a relevant
property for any object that is to be placed in space. It is
crucial in ensuring that the first constraint is respected, and
no collisions occur between resources. Second, for moving
resources, a kinematic model is needed for the simulative
validation. Third, a model of the resources’ workspace is
required to ensure that the constraint of reachability is satis-
fied. Fourth, information about how the resources themselves
can be assembledmust be included in themodel (Leiber et al.,
2019).
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Fig. 2 Structure of the resource model

Geometry and kinematics

A resource’s geometry represents its physical form, while the
resource’s kinematics describes how different parts of its 3D
model are connected. Today, CAD tools and geometric 3D
models are commonly used in product development and the
design of assembly lines (Weidemann & Drath, 2010, p. 30,
2010, pp. 18–19). Many suppliers of production resources
provide 3D models of their products to their customers.
For moving resources like industrial robots, these models
often include information about the resource’s kinematics.
To ensure these models’ usability independent of specific
software applications, standardized data formats (e.g., STEP,
COLLADA) for geometry or kinematics are used.

In our proposed resource model, the geometry and, if
applicable, the resource’s kinematics are essential. Without
these, it would be impossible to determine the quality or
even just the feasibility of a layout. Therefore, every resource
model in the resource library includes the geometry of the
modeled resource and, for moving resources, also its kine-
matics.

Modeling of workspaces

The workspace of a resource is the area that the resource
can reach and where it can perform the processes it provides.
The accessibility of the product and ROI by the respective
resources is a requirement for a feasible layout. Therefore,
the ROI must be located within the workspace of a resource.
However, among the theoretically possible positions, there
are better andworse ones. Thus, the relative position between
product and process executing resources is a factor that influ-
ences the quality of an assembly line layout.

Which poses in the workspace of a resource are good or
bad depends on the resource. To consider the quality of posi-
tioning in theworkspace, the resourcemodel needs to include
information about which positioning is advantageous and

which is disadvantageous. Therefore, an evaluation function
f (prel ) that calculates the pose quality PQ for a relative pose
prel between resource and ROI is part of the resource model.

Depending on the type of resource (e.g., robot, camera)
and the specific resource variant (e.g., kinematics type of a
robot), the evaluation functionmay consider different factors.
The characteristics of the resource determine the structure
of the evaluation function. To allow a comparison between
different resources, the quality evaluation is normalized to
PQ values between 0 and 1. A value of 1 represents an ideal
pose, while 0 means that a relative pose is not suitable. A
value of 0 can either be because the ROI is not entirely in the
workspace or because the orientation between resource and
ROI is not practical.

Deciding which criteria are relevant for evaluating the
workspace and how they are combined in the evaluation
function requires expert knowledge. For each resource, the
evaluation function has to be defined when it is added to
the resource library. If an evaluation function already exists
for a resource class, it can often be adapted for resources of
the same type. Figure 3 shows the workflow for determin-
ing the workspace evaluation function when modeling a new
resource for the resource library.

In the following sections, we present possible workspace
evaluation functions for the resource types “camera” and “in-
dustrial robot”. Depending on the specific requirements, the
user is free to adapt or replace the proposed functions.

Workspace evaluation of cameras

The primary function of a camera is to capture images. In an
industrial environment, they are used for various tasks such
as object recognition or optical quality inspection. The most
important consideration for the placement of a camera is the
quality of the captured images.

The size and shape of the camera’s workspace are mainly
determined by the type of optical system (e.g., entocentric,
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Fig. 3 Workflow for defining the workspace evaluation function of a
new resource

object-space telecentric), the image sensor used, the focal
length of the optics, as well as the lens and aperture used
(Gronle & Osten, 2016, p. 6).

The camera system’s properties result in an ideal distance
range within the working area, the so-called depth of field.
Outside this zone, the sharpness of the image decreases.
Therefore, the distance between the camera and ROI is a
significant influencing factor when evaluating a camera’s
positioning. Another factor influencing the image’s qual-
ity is the camera’s orientation relative to the surface being
observed. If the camera is not orthogonal to the work sur-
face, the spatial tilting causes blurring at the recorded image’s
edges (Chen et al., 2008, p. 68).

The pose quality PQ is therefore comprised of a distance-
dependent component PQdistance and a rotation-dependent
component PQrotation. PQdistance is a function of the distance
z between the camera and ROI and is calculated as.

P Qdistance(z) �

⎧
⎪⎪⎨

⎪⎪⎩

1
b−a (z − a) for a ≤ z ≤ b

1 for b ≤ z ≤ c
1

d−c (d − z) for c ≤ z ≤ d
0 else

(2)

with a being the minimal distance for the camera to work,
b and c being the near and far end of the ideal interval and
d being the maximal working distance. This means that if
the distance is within the ideal range of the depth of field,
PQdistance is 1; outside the range,PQdistance linearly decreases
until 0 is reached. Figure 4 shows the course of the function.

The rotation-dependent portion PQrotation is a function of
the angle γ between the visual axis of the camera and the
surface normal of the ROI and is calculated as.

P Qrotation(γ) � 1 − γ

γmax
(3)

Fig. 4 Development of the position-dependent portion of PQ

with γ max being the maximal tilt permitted. Ideally, the cam-
era is vertical to the ROI, and γ is 0. In this case, PQrotation

takes the value 1. If the ROI is tilted relative to the camera,
PQrotation linearly decreases until 0 is reached. The parame-
ters a, b, c, d, and γ max required to calculate PQdistance and
PQrotation depend on each camera’s characteristics and must
be defined for each type of camera added to the resource
library.

To calculate the pose quality PQ, the geometric mean
value is formed from the distance-dependent and the rotation-
dependent part, provided that the ROI is entirely within the
workspace and no other object blocks the sight.

(4)P Q

�
{ √

P Qdistance ∗ P Qrotation for ROI in workspace and not blocked
0 else

This calculation is more appropriate than the arithmetic
mean because the result is closer to the worse portion’s value.
In extreme cases, if one of the two values is 0, PQ will also
be 0 overall. This is desirable because if either position or
rotation results in poor recording quality, it cannot be com-
pensated by the other aspect.

Figure 5 illustrates various possible positions of the ROI
and the resulting pose quality. ROI 1 has a PQ of 0 because it
is partly outside the workspace. ROI 2 has a PQ of 1 because
it is located between b and c in the ideal distance range and is
vertical to the camera’s visual axis. ROI 3 is also in the perfect
distance range but is slightly tilted relative to the camera.
Its PQ is therefore between 0 and 1 at 0.6. While ROI 4 is
vertical to the camera, it is not within the ideal distance range
but between c and d. It, therefore, has a PQ of 0.4, which is
also between 0 and 1.

Workspace evaluation of industrial robots

Industrial robots are complex actuator-like resources that can
perform a variety of production processes. Consequently,
there are various plausible criteria for the evaluation of
relative poses between robot and ROI. Examples of such
characteristics, which are not solely dependent on the robot
type but also on the current axis position, are accuracy, lift-
ing capacity, or robot wear. Depending on the application,
different aspects can be focused on (Woenckhaus, 1994,
pp. 59–60). Another useful criterion for evaluating robot
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Fig. 5 Examples for the
evaluation of poses in the
workspace of a camera

poses is manipulability. Manipulability describes the robot’s
ability to freely change the end effector’s position and orien-
tation (Izui et al., 2013).

The Jacobian matrix J represents the relationship between
a robot’s joint velocities q̇ and the end effector’s movement
in a Cartesian reference coordinate system. It depends on the
robot’s kinematics and the current robot pose, defined by the
position q of the robotic joints. The Jacobian consists of a
linear part JP and an angular part JO. JP defines the relation-
ship between the joint speeds q̇ and the position change ṗ of
the end effector, while JO defines the relationship between
the joint velocities q̇ and the angular velocity ω of the end
effector. (Siciliano et al., 2009, p. 106).

J (q)q̇ �
[

JT

JR

]
q̇ �

[
ṗ
ω

]
(5)

Depending on the robot’s current pose, the robot’s capa-
bility to change the end effector’s position and orientation
varies. In extreme cases, so-called singularities occur in
which the Jacobian matrix is rank-deficient, and the manipu-
lability of the robot is reduced, meaning that the end-effector
cannot be arbitrarily moved. Close to such singular configu-
rations, even low speeds in Cartesian space lead to high axis
speeds. (Siciliano et al., 2009, p. 116).

A well-established representation of the mobility of the
end effector is the manipulability ellipsoid. It represents the
velocities in Cartesian space generated in a given robot pose
by given robot joint velocities. A direct metric for the eccen-
tricity of the manipulability ellipsoid and the current pose’s
distance to a singularity is the ratio σ between the Jacobian
matrix’s minimum and maximum singular value. In the case
of a singularity, the manipulability ellipsoid degenerates, and
σbecomes0. In the case of optimalmanipulability, all degrees
of freedom of the end effector can be used equally, and σ has
the value 1 (Siciliano et al., 2009, pp. 152–153, 2009, p. 155).

Poses close to a singularity are not only disadvantageous
for the manipulability but also other properties of the robot,
such as its accuracy and stress on the joints (Woenckhaus,
1994, pp. 59–60). Therefore, the proposed pose quality PQ
is based on the parameter σ that measures the eccentricity of

the manipulability ellipsoid and the current pose’s distance
to a singularity. It is calculated as

P Q(q) � (σ (J (q)))y �
(

σmin(J )

σmax (J )

)y

(6)

Here σmin(J ) is the minimum and σmax (J ) is the maximum
singular value of the Jacobianmatrix. The value ofσ is always
between 0 and 1, which corresponds to the position quality’s
normalized value range. An exponent y is added to scale PQ
distribution. In our example, y is set to 0.15. Figure 6 shows
a histogram of PQ for three different robot types.

To calculate the pose quality, the Jacobian is saved for each
robot type based on its kinematics as a function of the joint
angles. For a specific pose with defined axis positions, the
matrix’s maximum andminimum singular value and thusPQ
can be calculated. Figure 7 shows the evaluation of different
positions in the workspace of an LBR iiwa 7 industrial robot.
For each position, six orientations (along the world coordi-
nate system’s axis) were evaluated. The color represents the
mean PQ value of those evaluations.

Assembly information

Besides the functionality of a line layout, which is ensured if
all the resources in a station can reach the ROI, the feasibil-
ity of assembling the line itself and the costs associated with
the assembly are important criteria for evaluating a layout
draft. These costs depend to a large extent on the position-
ing of the various resources. For example, mounting directly
at designated interfaces (e.g., a sensor at the edge of a con-
veyor belt) is more economical than mounting at an arbitrary
position in space, where a special fixture would be needed.
The orientation can also be a factor; for example, mounting a
robot overhead is more costly than placing the same robot on
the floor. To take this into account in the optimization algo-
rithm, the possible mounting locations must be evaluated.
Additional information about each resource’s assembly con-
ditions is needed to consider these aspects in the automated
layout planning. Figure 8 gives an overview of the necessary
information.
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Fig. 6 Distribution of the values
of PQ for the achievable poses
of a 5-axis articulated arm robot
(KR6 R900 fivve), a 6-axis
articulated arm robot (Motoman
MH5), and a 7-axis articulated
arm robot (LBR iiwa 7)

Fig. 7 Examples for the evaluation of positions in the workspace of an LBR iiwa 7 robot, left: 3D view, center: sectional view from left, right:
sectional view from above

Fig. 8 Structure of the assembly
information

The first part of the assembly information is the location of
the passive mounting interface of the resource. These inter-
faces describe where the resource is physically connected to
its environment. In the case of an industrial robot, the passive
mounting interface would be in the robot base. To automat-
ically generate and optimize 3D layouts, this information is
crucial. The second aspect is the resource’s characteristics
relevant for its placement (like its weight), constraints con-
cerning the ambient conditions (like certain temperatures or
air humidity), and the basic costs associated with installing
the resource. Thirdly, the resource may contain restrictions
on the orientation of its installation. For example, it might
be defined that a resource can only be installed upright,
and overhead mounting is not permitted. It is also defined
how much additional effort would be caused by different
mounting options (e.g., on the floor/ceiling/another resource

or freely in space with a designated support structure). The
fourth part is the active mounting interfaces. They do not
describe the requirements for installing the resource itself
but rather indicate where other resources can be connected
to the resource geometrically. Additionally, they have param-
eters that provide restrictions for the resources placed on the
interface (e.g., a maximum bearing load) and a factor that
describes the effort to install another resource.

Solution approach

Generating a feasible layout and optimizing it according
to the presented objective function (Eq. 1) is computation-
ally costly. Therefore, a heuristic algorithm, specifically a
genetic algorithm, is used (Fig. 9). In a genetic algorithm, a
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Fig. 9 Basic functionality of a genetic algorithm

population of individuals representing potential solutions is
generated. Then the individuals’ fitness is calculated, and the
next generation is created. By using suitable genetic opera-
tors, the individuals’ fitness increases from one generation
to the other, approximating the optimal solution (Mitchell,
1999).

For the implementation of the genetic algorithm, the open-
source library GeneticSharp (Giacomelli, 2019) was used.
It provides a genetic algorithm that can be adapted to a
specific use case. The encoding of potential solutions into
genes and chromosomes, as well as the genetic operations
and selection strategies, can be customized. In the proposed
layout planning system, the optimization module interacts
with the resource library and the simulation module to gen-
erate, evaluate, and optimize potential layout solutions. For
the necessary simulations (e.g., to ensure that resources do
not overlap and can reach the product), the Unity 3D game
engine is used because it is very flexible for assembly line
simulation (Paul et al., 2019).

Encoding of the potential solutions

For the optimization of the placement of resources, each indi-
vidual represents a possible layout. It contains the allocation
of resources to stations and a chromosome consisting of a
list of genes, where each gene is a six-dimensional vector,
representing the pose of a resource in space (Fig. 10).The
first three entries of the vector represent the resource’s posi-
tion and the last three its orientation. The entries refer to the
coordinate system of the respective station.

Creation of a new individual

When a new individual is created (Fig. 11), the regions
where each resource can be placed are determined first. On
the one hand, these are the active interfaces of the other
resources of the same station if they meet the resource’s
requirements (e.g., maximum bearing load higher than the
resource’s weight). On the other hand, the resource can be
placed in the station independent of the other resources (e.g.,
on the station’s floor or ceiling). Then the resource is ran-
domly assigned a valid pose relative to its station. If placed
on another resource, the resource’s weight is subtracted from
the interface’s maximum bearing capacity to avoid an over-
load through multiple resources. Then, possible collisions
of the resource with other objects in its station are evalu-
ated. If there is a collision, the resource is placed anew and
checked again for a collision. If no collision-free solution
can be found after a certain number of attempts, the station
is declared invalid, and the process continues with the next
resource. After all the resources are placed in their respec-
tive stations, the individual stations are placed one after the
other along the line as close as possible, thus creating an
overall layout of the line. When evaluating the layout design,
the number of invalid stations (with at least one colliding
resource) is taken into account, and the individual accord-
ingly is evaluated negatively.

Description of the genetic operations

Genetic operations are used to create the next generation in
a genetic algorithm. Mutation operators are applied to exist-
ing individuals to create a new one. Recombination operators
combine two existing individuals into two new ones. A selec-
tion strategy is used to choose suitable individuals for the
application of the operators. Those operations have to be
adapted to the specific problem and the individuals’ encoding
to achieve an efficient optimization process. For the layout
optimization, the following operators are considered:

• Uniform Mutation: Each gene is mutated with a given
probability. If the gene is mutated, the respective resource
is given a new, random position and orientation.

• Uniform Crossover: For each resource position encoded in
a gene in the chromosome, it is randomly decided which
parent’s gene is chosen. This means that some resources
are at the positions they had in the one parent, others at the
position they had in the other parent.

• Station Crossover: All the genes representing resource
poses in the same station are taken from the same parent.
For each station, it is randomly decided which parent’s
resource poses are used.
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Fig. 10 Structure of an
individual

Fig. 11 Creation of a new individual

• Station and uniform crossover: Crossover is either per-
formed based on resources or stations with a probability
of 50%, respectively.

• Elitist Selection: The individualswith the best fitness value
are chosen among the generated child individuals. If the
minimumpopulation size is not reached, parent individuals
from the previous generation are added.

• Tournament Selection: Two individuals from the current
generation are randomly chosen, and the one with the bet-
ter fitness is selected to be a parent.

• Roulette Wheel Selection: Each individual is chosen with
a probability corresponding to its fitness value compared
to all other chromosomes’ fitness in the same generation
to be a parent.

Evaluation of the fitness

In a genetic algorithm, the individuals are evaluated with a
fitness function. Since a genetic algorithm tries to maximize
the fitness, the fitness function to determine a layout’s fitness
F is defined as the negative of the optimization problem’s
objective function (Eq. 7).

F (poseRes)

� −
(

α ·
∑

Res

cmounting + β · Aline + γ ·
∑

Res

(1 − P Q)

)

(7)

It consists of three terms that contain factors contributing
to the line’s economic viability:

• cmounting , the costs of assembling the line itself
• Aline, the line’s area that causes costs for the floor space
• P Q, the technical quality of the layout that influences the
reliability and the scrap rate of the line

These three aspects are multiplied by the coefficients α,
β and γ to reflect the user’s preferences in weighting the
different elements. In the following, we explain the three
terms in detail.

Themounting costs cmounting depend on a resource’s posi-
tioning and the effort necessary to install it there. They
are calculated by multiplying the basic mounting costs
cbasicmounting by several factors representing the resource’s
specific installation conditions (Eq. 8).

cmounting � cbasicmounting ·ϕmountingtype ·ϕinter f ace ·ϕblocked

(8)
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The basic mounting costs cbasicmounting describe the costs
to install a resource in the line. The factor ϕmountingtype is
a property of the resource and is included in the resource
model. Its value depends onhow the resource ismounted. The
factor ϕinter f ace is only relevant if the resource is installed
on the mounting interface of another resource. The resource
model that contains the interface then provides its value that
describes the effort to use the mounting interface. The last
factorϕblocked is used to penalize the positioning of resources
above another object (e.g., other resources). To reflect the
increased effort in this situation, we set it to 1.5 if another
object is placed between a resource’s passive mounting inter-
face and the floor; otherwise, if there is no blocking object,
we set it to 1. The coefficient α in Eq. 7 weights the mounting
costs relative to the other terms. It will tend to be inversely
proportional to the line’s expected lifetime because the longer
the line is in use, the less critical the initial costs.

The second aspect influencing the layout fitness is the
line’s occupied area since additional factory space is associ-
ated with increased costs. The station areas that are summed
up to the line’s area Aline are determined by drawing the
smallest possible rectangle around the resources in a station.
The coefficientβ that ismultiplied by Aline can be interpreted
to represent the cost per unit of space. Itmight be proportional
to the line’s expected lifetime because the space is occupied
as long as the line is used.

Lastly, the technical quality of the resources’ positioning
represented by the pose quality P Q is considered. P Q is a
function of the relative pose between the resource and the
product, and the specific function is part of the resource’s
model. An ideal resource pose has the position quality of 1
(Sect. 0), meaning the term (1 − P Q) has the ideal value
0. The coefficient γ shows the weight the user put on the
positioning relative to the other factors. Since the positioning
has an effect over the whole lifetime of the line, γ might also
be proportional to the expected lifetime of the line.

Parameter study

The presented algorithm has a set of parameters and set-
tings that influence the optimization results’ quality and the
optimization process’s speed. To determine a suitable set of
parameters for the positioning problem, a parameter study
was performed for an example consisting of multiple stations
and different resources. The assembly line in the example
consists of six stations, each with two or three resources
(cameras, light sensors, or robots of various types). The light
sensor was modeled similarly to the cameras but with an
adapted workspace and a pose quality function independent
of orientation.

Table 1 Factors and corresponding levels for the computational exper-
iment

Factor Levels

Selection strategy Elitist Roulette wheel Tournament

Crossover strategy Uniform Station Combined

Mutation probability 0% 10% 40%

Crossover probability 25% 75% 100%

Design of experiments

A design of experiments (DoE) approach was used to define
which computational experiments to conduct. According to
Dean et al. (2017) the first steps in planning an experiment
are the definition of the experiment’s objective and the identi-
fication of the relevant factors and their levels. In the present
case the purpose of the experiment is to find the combination
of settings of the variable parameters that leads to the best
optimization result. The following factors and levels were
considered (Table 1):

• The Selection strategy determines the criterion by which
individuals are chosen for the next generation.Three strate-
gies (see Sect. 0) are evaluated: Elitist selection, Roulette
wheel selection, and Tournament selection.

• Crossover strategy defines howa crossover of two chromo-
somes is performed. Three types of strategies (see Sect. 0)
are evaluated: uniform crossover, station crossover, and
combined station and uniform crossover.

• The Mutation Probability sets the probability of a gene
being mutated. The mutation introduces randomness into
the algorithm. Four values of mutation probability (0%,
10%, 40% and 80%) are evaluated.

• The Crossover Probability sets the probability that a
crossover happens, leading to new child chromosomes.
The higher the crossover probability, the higher the ratio
of child chromosomes compared to parent chromosomes in
one generation. Three crossover probabilities (25%, 75%
and 100%) are evaluated.

The remaining parameters are set as follows:

• cbasicmounting � 100

• ϕmountingtype,cameras �
{

1 formounting on another resource
2 formounting directly in the station

• ϕmountingtype,robots � 10 for mounting on the ground
• ϕinter f ace,conveyour � 1
• α � 1, β � 200, γ � 1000
• Number of generations: 200
• Population size: 25
• Mutation: Uniform
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Fig. 12 Optimization result
depending on the factors

Fig. 13 Influence of individual factors on the optimization result

Fig. 14 Setup of the first example

The population size and the number of generations are
kept constant, as the dependency of the result on these
parameters is clear: the larger the population and the higher
the number of generations, the better the result. Of course,
this implies higher computational costs and simulation time.
The mutation strategy is also unaltered. A mutation strategy
based on the resources analogous to the uniform crossover
is performed. Even though other strategies are undoubtedly
possible, we consider this one the most natural approach.

To study the relationship between the factors and the
quality of the optimization process a full factorial experi-
mental design was chosen. This design allows to determine
the influence of the individual factors as well as their inter-
dependencies. (Siebertz et al., 2010) For each combination
of parameters, three simulation runs were performed. The

experimental design as well as the results for each run can
be found in Table 4 in the supplementary material.

Analysis of the results

Based on the collected data a quadratic statistical model was
created and used to predict optimal values for the factors. The
R-squared value of the model is 0.72. A multiple regression
analysis suggested the use of roulette wheel selection, station
crossover, a crossover probability of 100%, and a mutation
probability of 25% (Fig. 12).

Besides identifying the optimal values for the parameters,
the statistical model also allows an analysis of the individ-
ual factor’s influence on the optimization results (Fig. 13).
The mutation probability has the highest impact on the qual-
ity of the optimization results. This is plausible since a high
mutation probability is close to a random search but to lit-
tle mutation is also not ideal since a certain amount of
randomness is necessary. Therefore, striking the right bal-
ance is of great importance. The crossover probability is
also quite influential. However, here it is clear that a max-
imal value leads to the best results. This seems reasonable
since crossover drives a genetic algorithm by combining the
strength of different individuals. The chosen strategies for
crossover and selection have a comparatively small influ-
ence. This might be because the different strategies are quite
similar. In the case of recombination, two individuals are
combined, trying to preserve their strengths; in the case of
selection, good solutions are favoured, while trying to keep
a certain diversity in the population.

Examples

The following section presents three increasingly complex
layout planning problems to illustrate and evaluate the pro-
posed optimization algorithm’s capabilities.
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Fig. 15 Best layout in selected generations of the first run

Fig. 16 The final layout of the first three runs of the first example

Camera positioning example

In the first example, the presented algorithm is used to posi-
tion several cameras with respect to one ROI within one
station. The example demonstrates that resources can be
placed on the active mounting interfaces of another resource,
as well as directly in the station. It also illustrates the sys-
tem’s ability to generate collision-free layouts and to ensure
the ROI’s visibility for all cameras. The setup is shown in
Fig. 14.

The ROI is located on a conveyor. The conveyor model
includes active mounting interfaces on the side of the belt
(visible as yellow Boxes in Fig. 14). In addition, an obsta-
cle next to the ROI partially blocks the cameras’ field of
view. Six cameras are positioned. Two instances of three dif-
ferent camera models are used: The Imaging Source DFK
38UX304 (The Imaging Source, 2019), Basler BIP2-1920c
(Basler, 2020), andSICKRANGER3—V3DR3-60NE31111
(SICK, 2021).

The cameras need to look over or past the obstacle to
obtain a goodpose quality because the pose quality is only not
0 if the camera can see the whole object (Eq. 4). Unity’s ray
tracing functionality is used to check if the obstacle blocks the

Fig. 17 Development of the fitness of the best individual in a generation
in the ten runs

cameras’ view. The cameras can bemounted on the conveyor
as well as directly in the station. The parameters of the fitness
function are set as follows:

• cbasicmounting � 100

• ϕmountingtype,cameras �
{

1 for mounting on another resource
2 for mounting directly in the station
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Fig. 18 Number of cameras mounted on the conveyor in the ten runs

• ϕinter f ace,conveyour � 1
• α � 1, β � 0, γ � 1000

There are positions in the mounting space and the free
mounting space that result in a perfect pose quality. This
means that one camera’s optimal position would be on the
mounting space looking past the obstacle. Area costs are
neglected in this example, leading to β � 0.

The genetic algorithm itself has the following character-
istics:

• Number of generations: 400
• Population size: 10
• Mutation: Uniform mutation
• Selection strategy: Roulette wheel selection
• Crossover strategy: Uniform crossover (station crossover
would have no effect as there is only one station)

• Mutation probability: 25%
• Crossover probability: 100%

The optimization was run ten times. Figure 15 shows the
best layout from selected generations of the first run. Pictures
from further generations and runs can be found in the supple-
mentary data. If a camera has a pose quality of 0, it is marked
in red. The pictures give an impression of the evolution of
the solutions.

Table 2 Movement time of the robots in the second example

Run 1 Run 2 Run 3

KUKA KR6 R900 fivve 1.0 1.0 1.0

KUKA LBR iiwa 7 R800 1.2 1.3 1.9

Yaskawa Motoman MH5 1.2 1.2 2.3

Figure 16 shows the final positioning for runs 1 to 3. For
all cameras, a suitable position could be found.

Figure 17 depicts the development of the best individual’s
fitness over the generations in the ten runs. As expected, the
fitness gradually increases over the generations.

Figure 18 provides further insight into the optimization
process by visualizing the number of cameras placed using
the conveyer’s active mounting interfaces. A solution with
all cameras directly on the conveyer would be feasible and
ideal for mounting costs. However, its overall fitness would
be relatively low due to some cameras being positioned far
from the ROI. This shows that the algorithm successfully
strikes a compromise between pose quality and mounting
costs.

Robot positioning example

In the second example, robots are positioned within one sta-
tion of an assembly line. It demonstrates the capabilities of
the approach regarding the positioning of moving resources.
This includes evaluating the robots’ position, simulation of
their trajectory, and collision detection. Additionally, we
show the planning system’s capability to estimate the cycle
time for a layout. In the example, three different robot mod-
els are positioned around an ROI on a conveyor: KUKA
KR6 R900 fivve (KUKA, 2017a), KUKA LBR iiwa 7 R800
(KUKA, 2017b), andYaskawaMotomanMH5 (YASKAWA,
2019).

The fitness evaluation and the collision detection for mov-
ing resources like robots are more complex than for static
resources like cameras. Every robot has a starting position
for its movement, e.g., the robot’s home position or a position
at a table (included in the model) where material is supplied.

Fig. 19 Final layout of the first three runs of the second example
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Fig. 20 Development of the fitness of the best individual in a generation
in the ten runs

From this position, it moves to the ROI.More target positions
(like a gripper change system) could be added. If the robot
cannot reach the ROI and possibly other target positions, the
pose quality is 0; otherwise, it is calculated with the PQ for-
mula stored in the robot model (Eq. 6). Collision with other
physical objects (i.e., other resources) is not allowed in the
starting position. At the ROI and other target positions (and
during the transition from the reference position to the ROI),
no collisionwith other physical objects is allowed, apart from
other moving resources, i.e., robots. This is because they will
move to the ROI one after the other, so no actual collision
occurs. In the example, no suitable active mounting inter-
faces for mounting robots exist, and the mounting always
takes place on the ground. Consequently, the mounting costs
are fixed and can be neglected, reflected in the parameter α

being zero. The parameters of the fitness function are set to
α � 0, β � 200, γ � 1000 and the genetic algorithm itself
has the following characteristics:

• Number of generations: 300
• Population size: 10
• Mutation: Uniform mutation
• Selection strategy: Roulette wheel selection
• Crossover strategy: Uniform crossover (station crossover
would have no effect as there is only one station)

• Mutation probability: 25%
• Crossover probability: 100%

The optimization was run ten times. Figure 19 shows the
final layouts of runs 1 to 3.

Run 3 found the best solution in terms of minimizing the
area of the station. However, it is noteworthy that the solu-
tions found in runs 1 and 2 have better overall fitness than
the one found in run 3 while simultaneously having a larger
area. This again demonstrates the algorithm’s ability to strike
a balance between different objectives. Figure 20 shows the
development of the fitness over the generations in the ten

runs. As expected, the fitness gradually increases over the
generations.

Besides optimizing the layout for defined objectives, the
system can also evaluate the time the robot needs to move
to its target positions using the BioIK library (Starke et al.,
2019). This way, it can be ensured that the required cycle
time is met. Table 2 shows the movement time in seconds for
the three robots in the station in the first three runs.

Example with ten stations

This example demonstrates the capabilities of the algorithm
for a large-scale problemwith multiple stations. In the exam-
ple, the line contains ten stations with two or three resources
each. The resources are either a camera (three different mod-
els, see the first example), a robot (three different models,
see the second example), or a light barrier (one model, Leuze
electronic PRK 46B (Leuze electronic, 2011)). The parame-
ters of the fitness function are set as follows:

• cbasicmounting � 100

• ϕmountingtype,cameras �
{

1 formounting on another resource
2 formounting directly in the station

• ϕmountingtype,robots � 10 for mounting on the ground
• ϕinter f ace,conveyour � 1
• α � 1, β � 200, γ � 1000

The genetic algorithm itself has the following character-
istics:

• Number of generations: 400
• Population size: 25
• Mutation: Uniform mutation
• Selection strategy: Roulette wheel selection
• Crossover strategy: Station crossover
• Mutation probability: 25%
• Crossover probability: 100%

Again, ten runs were performed. The final positioning of
three runs is shown in Fig. 21. The algorithm positions all
resources successfully (the smaller resources are not clearly
visible but also feasibly placed). It is observable that the
resources are placed closely together to minimize the area
used.

Figure 22 shows the development of the fitness in the ten
runs.

Additionally, the robot’s movement times from their start-
ing position to the ROI were calculated (Table 3). Combined
with the distance between the stations and the speed of the
conveyor, these times can be used to calculate the cycle time
of the line.
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Fig. 21 Final layout of the three runs of the third example

Fig. 22 Development of the fitness of the best individual in a generation
in the ten runs

Conclusion and outlook

In this article, we presented a novel approach to arrange dif-
ferent production resources into a three-dimensional assem-
bly line layout. The planning system consists of a resource
library with digital models of all available resources and an
optimizationmodule that generates and optimizes the layouts
with a genetic algorithm. A parameter study was performed
to determine the optimization algorithm’s configuration. For
the evaluation of a layout’s fitness, a multi-body simulation
with Unity 3D is used. The presented system is highly flexi-
ble and supports the positioning of multiple resource types.
It is also open to integrating more resource variants or cus-
tomizing the fitness function to reflect the individual user’s
preferences accurately.

Table 3 Movement time of the robot in the third example

Run 1 Run 2 Run 3

Station 1 KUKA LBR iiwa 7 R800 1.2 1.2 1.3

Station 2 Yaskawa Motoman MH5 w.
table

1.2 2.0 3.0

Station 2 KUKA LBR iiwa 7 R800 1.3 1.2 1.4

Station 3 KUKA KR6 R900 fivve 1.0 1.0 1.5

Station 4 KUKA LBR iiwa 7 R800 1.3 1.3 1.5

Station 4 Yaskawa Motoman MH5 1.9 1.1 1.1

Station 4 KUKA KR6 R900 fivve 1.0 1.0 1.7

Station 5 KUKA KR6 R900 fivve w.
table

1.0 1.0 1.9

Station 6 Yaskawa Motoman MH5 1.8 2.4 1.1

Station 7 KUKA KR6 R900 fivve 1.0 1.0 1.4

Station 7 KUKA LBR iiwa 7 R800 1.3 1.2 1.4

Station 8 Yaskawa Motoman MH5 1.5 1.1 1.1

Station 8 KUKA LBR iiwa 7 R800 1.3 1.2 1.4

Station 9 KUKA LBR iiwa 7 R800 1.4 1.3 1.4

Station 9 KUKA LBR iiwa 7 R800 2.3 1.2 1.3

Station 10 KUKA KR6 R900 fivve 1.0 1.0 1.7

The integration of more resource models and the model-
ing of more resource types would be the logical next step
to improve the system further. In this article, we exemplarily
implemented several real resourcemodels to demonstrate the
functionality of the approach. Extending the library of avail-
able resources would be crucial for industrial usage of the
system. Another possible enhancement would be the inclu-
sion of the cycle time in the optimization objective. The
presented algorithm allows an evaluation, whether a maxi-
mally allowed cycle time is observed. However, it would also
be reasonable to aim for a minimization of the cycle time.
The calculation of the cycle time of a station could also be
refined by considering resources moving in parallel as long
as they do not collide. Another interesting degree of freedom
that could be included in the planning system is the options
for parallel stations. Lastly, it would be desirable to inte-
grate more planning decisions, like balancing the line and the
positioning of the resources into one planning/optimization
system to consider interdependencies and reach an overall
optimum.Besides these possible improvements to the system
and the formulated optimization model it would be inter-
esting to compare the chosen genetic algorithm with other
solution approaches like ant colony or particle swarm algo-
rithms. Moreover, reinforcement learning could be applied
to generate layouts.
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