Skip to main content
Log in

An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

An accurate prediction of the machining tool condition during the cutting process is crucial for enhancing the tool life, improving the production quality and productivity, optimizing the labor and maintenance costs, and reducing workplace accidents. Currently, tool condition monitoring is usually based on machine learning algorithms, especially deep learning algorithms, to establish the relationship between sensor signals and tool wear. However, deep mining of feature and fusion information of multi-sensor signals, which are strongly related to the tool wear, is a critical challenge. To address this issue, in this study, an integrated prediction scheme is proposed based on deep learning algorithms. The scheme first extracts the local features of a single sequence and a multi-dimensional sequence from DenseNet incorporating a heterogeneous asymmetric convolution kernel. To obtain more perceptual historical data, a “dilation” scheme is used to extract features from a single sequence, and one-dimensional dilated convolution kernels with different dilation rates are utilized to obtain the differential features. At the same time, asymmetric one-dimensional and two-dimensional convolution kernels are employed to extract the features of the multi-dimensional signal. Ultimately, all the features are fused. Then, the time-series features hidden in the sequence are extracted by establishing a depth-gated recurrent unit. Finally, the extracted in-depth features are fed to the deep fully connected layer to achieve the mapping between features and tool wear values through linear regression. The results indicate that the average errors of the proposed model are less than 8%, and this model outperforms the other tool wear prediction models in terms of both accuracy and generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Acknowledgements

This research was funded by Projects of International Cooperation and Exchanges NSFC (Grant Numbers 51720105009). National Key Research and Development Project (Grant Numbers 2019YFB1704800). Outstanding Youth Fund of Heilongjiang Province (Grant Numbers YQ2019E029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianli Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, B., Li, X. et al. An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion. J Intell Manuf 34, 885–902 (2023). https://doi.org/10.1007/s10845-022-01954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01954-9

Keywords

Navigation