Skip to main content
Log in

Exploratory Navigation Based on Dynamical Boundary Value Problems

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper presents a general framework for concurrent navigation and exploration of unknown environments based on discrete potential fields that guide the robot motion. These potentials are obtained from a class of partial differential equation (PDE) problems called boundary value problems (BVP). The boundaries are generated from sensor readings and therefore they change as the robot moves. This framework corresponds to an extension of our previous work (Prestes, E., Idiart, M. A. P., Engel, P. and Trevisan, M.: Exploration technique using potential fields calculated from relaxation methods, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, p. 2012; Prestes, E., Engel, P. M., Trevisan, M. and Idiart, M. A.: Exploration method using harmonic functions, Robot. Auton. Syst. 40(1) (2002), 25–42). Here, we propose that a careful choice of the PDE and the boundary conditions can produce efficient exploratory behaviors in sparse and dense environments. Furthermore, we show how to extend the exploratory behavior to produce new ones by changing dynamically the boundary function (the value of the potential at the boundaries) as the exploration takes course. Our framework is validated through a series of experiments with a real robot in office environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barraquand, J., Langlois, B., and Latombe, J.: Numerical potential field techniques for robot path planning, IEEE Trans. Syst. Man Cybern. 22 (1992), 224–240.

    Article  MathSciNet  Google Scholar 

  • Batavia, P. and Nourbakhsh, I.: Path planning for the Cye Robot, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, pp. 15–20.

  • Borenstein, J. and Koren, Y.: Histogramic in-motion mapping for mobile robot obstacle avoidance, IEEE J. Robot. Autom. 7(4) (1991), 535–539.

    Article  Google Scholar 

  • Connolly, C. I.: Harmonic functions and collision probabilities, Int. J. Rob. Res. 16(4) (1994), 497–507.

    Article  Google Scholar 

  • Connolly, C. I. and Grupen, R. A.: On the application of harmonic functions to robotics. J. Robot. Syst. 10 (1993), 931–946.

    Article  MATH  Google Scholar 

  • Feder, H. J. S., Leonard, J. J., and Smith, C. M.: Adaptive mobile robot navigation and mapping. Int. J. Rob. Res. 18(7) (1999), 650–668.

    Article  Google Scholar 

  • Feynman, R. P., Leighton, R. B., and Sands, M.: The Feynman Lectures on Physics, Vol. 2. Addison-Wesley, 1972.

  • Khatib, M.: Sensor based motion control for mobile robots. Ph.D. thesis, Laboratoire d'Automatique et d'Analise des Systmes, Toulouse, France, 1996.

  • Kim, J. and Khosla, P.: Real-time obstacle avoidance using harmonic potential functions, IEEE Trans. Robot. Autom. Syst. 8 (1992), 338–349.

    Article  Google Scholar 

  • Latombe, J.-C.: Robot Motion Planning, Kluwer Academic Publishers, Assinippi, Norwell, Massachusetts, 1993.

    Google Scholar 

  • Lumelsky, V. and Skewis, T.: Incorporatin range sensing in the robot navigation function, IEEE Trans. Syst. Man Cybern. 20(5) (1990), 1058–1069.

    Article  Google Scholar 

  • Lumelsky, V. and Stepanov, A.: Dynamic path planning for a mobile automaton with limited information on the environment, IEEE Trans. Automat. Contr. (1986), 1058–1063.

  • O'Keefe, J. and Burgess, N.: Geometric determinants of the place fields of hippocampal neurons, Nature 381 (1996), 425–428.

    Article  PubMed  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, 1992.

  • Prestes, E., Idiart, M. A. P., Engel, P., and Trevisan, M.: Exploration technique using potential fields calculated from relaxation methods, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, p. 2012.

  • Prestes, E., Engel, P. M., Trevisan, M., and Idiart, M. A.: Exploration method using harmonic functions, Robot. Auton. Syst. 40(1) (2002), 25–42.

    Article  Google Scholar 

  • Prestes, E., Idiart, M. A., Trevisan, M., and Engel, P. M.: Autonomous learning architecture for environmental mapping, J. Intell. Robot. Syst. 39 (2004), 243–263.

    Article  Google Scholar 

  • Rao, N. S. V., Kareti, S., Shi, W., and Iyengar, S. S.: Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1993.

    Google Scholar 

  • Rimon, E. and Koditschek, D.: Exact robot navigation using cost functions, in: IEEE/RSJ International Conference of Robotics and Automation, 1988, pp. 1791–1796.

  • Sabersky, R., Acosta, A., and Hauptmann, E.: Fluid Flow, MacMillan Publishing Co., 1971.

  • Smith, L. and Husbands, P.: Visual landmark navigation through large-scale environments, in: EPSRC/BBSRC International Workshop on Biologically-Inspired Robotics: The Legacy of W. Grey Walter, 2002, pp. 272–279.

  • Solanas, A. and Garcia, M. A.: Coordinated multi-robot exploration through unsupervised clustering of unknown space, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 717–721.

  • Thrun, S., Burgard, W., and Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, in: IEEE International Conference on Robotics and Automation, 2000, pp. 321–328.

  • Thrun, S., Hähnel, D., Ferguson, D., Montermerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., and Whittaker, W.: A system for volumetric robotic mapping of abandoned mines, in: IEEE International Conference on Robotics and Automation, 2003, pp. 4270–4275.

  • Yamauchi, B.: A frontier based exploration for autonomous exploration, in: IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997, pp. 146–151.

  • Yamauchi, B., Schultz, A., Adams, W., and Graves, K.: Mobile robot exploration and map-building with continuous localization, in: IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, pp. 3715–3720.

  • Yang, Y., Brock, O., and Grupen, R. A.: Exploiting redundancy to implement multi-objective behavior, in: IEEE International Conference on Robotics and Automation, 2003, pp. 3385–3390.

  • Zelek, J. S.: A framework for mobile robot concurrent path planning and execution in incomplete and uncertain environments, in: AIPS-98 Workshop on Integrating Planning, Scheduling & Execution in Dynamic & Uncertain Environments, Pittsburgh, PA, 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Trevisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevisan, M., Idiart, M.A.P., Prestes, E. et al. Exploratory Navigation Based on Dynamical Boundary Value Problems. J Intell Robot Syst 45, 101–114 (2006). https://doi.org/10.1007/s10846-005-9008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-005-9008-2

Key words

Navigation