Skip to main content
Log in

A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Transformer fault diagnosis and repair is a complex task that includes many possible types of faults and demands special trained personnel. Moreover, the minimization of the time needed for transformer fault diagnosis and repair is an important task for electric utilities, especially in cases where the continuity of supply is crucial. In this paper, Stochastic Petri Nets are used for the simulation of the fault diagnosis process of oil-immersed transformers and the definition of the actions followed to repair the transformer. Transformer fault detection is realized using an integrated safety detector, in case of sealed type transformer that is completely filled with oil, while a Buchholz relay and an oil thermometer are used, in case of transformer with conservator tank. Simulation results for the most common types of transformer faults (overloading, oil leakage, short-circuit and insulation failure) are presented. The proposed Stochastic Petri Net based methodology provides a systematical determination of the sequence of fault diagnosis and repair actions and aims at identifying the transformer fault and estimating the duration for transformer repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgilakis, P.S., Doulamis, N.D., Doulamis, A.D., Hatziargyriou, N.D., Kollias, S.D.: A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach. IEEE Trans. Syst. Man Cybern. Part C, Applications and Reviews 31(1), 16–34 (Feb. 2001)

    Article  Google Scholar 

  2. Fulchiron, D.: Protection of MV/LV Substation Transformers. Grenoble: Schneider Electric, Direction Scientifique et Technique, Service Communication Technique, Cahier Technique no 192, 1998

  3. Bengtsson, C.: Status and trends in transformer monitoring. IEEE Trans. Power Deliv. 11(3), 1379–1384 (July 1996)

    Article  Google Scholar 

  4. Pugh, P.S., Wagner, H.H.: Detection of incipient faults in transformer by gas analysis. AIEE Transaction 80, 189–195 (1961)

    Google Scholar 

  5. Kelly, J.J.: Transformer fault diagnosis by dissolved gas analysis. IEEE Trans. Ind. Appl. 16(6), 777–782 (1980)

    Article  Google Scholar 

  6. Oommen, T.V., et al.: Analysis of furanic compounds from cellulose aging by GC-MS, and attempts to correlate with degree of polymerization. CIGRE Berlin Symposium, Paper 110–2, Apr. 1993

  7. Eriksson, T., Leijon, M., Bengtsson, C.: PD on-line monitoring of power transformers. IEEE Stockholm Power Tech (1995)

  8. Hanique, E., Reijnders, H., Vaessen, P.: Frequency response analysis as a diagnostic tool. Elektrotechniek 68, 549 (1990)

    Google Scholar 

  9. Ildstad, E., Gäfvert, U., Thärning, P.: Relation between return voltage and other methods for measurement of dielectric response. IEEE Int. Symposium on Electrical Insulation, June 1994

  10. Wang, Z., Liu, Y., Griffin, P.J.: A combined ANN and expert system tool for transformer fault diagnosis. IEEE Trans. Power Deliv. 13(4), 1224–1229 (Oct. 1998)

    Article  Google Scholar 

  11. Zhang, Y., Ding, X., Liu, Y., Griffin, P.J.: An artificial neural network approach to transformer fault diagnosis. IEEE Trans. Power Deliv. 11(4), 1836–1841 (Oct. 1996)

    Article  Google Scholar 

  12. Lin, C.E., Ling, J.M., Huang, C.L.: An expert system for transformer fault diagnosis using dissolved gas analysis. IEEE Trans. Power Deliv. 8(1), (Jan. 1993)

  13. Tomsovic, K., Tapper, M., Ingvarsson, T.: A fuzzy information approach to integrating different transformer diagnostic methods. IEEE Trans. Power Deliv. 8(3), (July 1993)

  14. Farag, A.S., Mohandes, M., Al-Shaikh, A.: Diagnosing failed distribution transformers using neural networks. IEEE Trans. Power Deliv. 16(4), 631–636 (Oct. 2001)

    Article  Google Scholar 

  15. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engelwood Cliffs, NJ (1981)

    Google Scholar 

  16. Desrochers, A.A., Al-Jaar, R.: Applications of Petri Nets in Manufacturing Systems – Modeling, Control and Performance Analysis. IEEE (1995)

  17. Murata, T.: Petri Nets: Properties, analysis and applications. Proceedings of the IEEE. 77(4), 541–580 (Apr. 1989)

    Article  Google Scholar 

  18. Torn, Petri nets – Calculating invariants [Online]. Available: www.abo.fi/~atorn/Petri/P53.html

  19. Martinez, J., Silva, M.: A simple and fast algorithm to obtain all invariants of generalized Petri Net. Application and Theory of Petri Nets, vol. 52, pp. 301–311. Springer, Berlin Heidelberg New York (1982)

    Google Scholar 

  20. Mellado, E.L.: Analysis of discrete event systems by simulation of timed Petri Net models. Math. Comput. Simul. 61, 53–59 (2002)

    Article  MATH  Google Scholar 

  21. Zuberek, W.: Timed Petri Nets in modeling and analysis of cluster tools. IEEE Trans. Robot. Autom. 17(5), 562–575 (Oct. 2001)

    Article  Google Scholar 

  22. Moloy, M.K.: Performance analysis using stochastic Petri Nets. IEEE Trans. Comput. C-31, 913–917 (Sept. 1987)

    Article  Google Scholar 

  23. Valavanis, K.P.: On the hierarchical modeling analysis and simulation of flexible manufacturing systems with extended Petri Nets. IEEE Trans. Syst. Man Cybern. 20(1), 94–110 (Jan.–Feb. 1990)

    Article  Google Scholar 

  24. Moody, J., Antsaklis, P.: Supervisory Control of Discrete Event Systems Using Petri Nets. Kluwer (1998)

  25. Gu, T., Bahri, P.: A survey of Petri Net applications in batch processes. Comput. Ind. 47, 99–111 (2002)

    Article  Google Scholar 

  26. Tsinarakis, G.J., Valavanis, K.P.: Modular hybrid Petri Nets for studying multi-operational production systems where parts follow multiple alternative processes. Proc. IEEE ICRA 2004, New Orleans, Los Angeles (April 2004)

  27. Sun, J., Qin, S.Y., Song, Y.H.: Fault diagnosis of electric power systems based on fuzzy Petri Nets. IEEE Trans. Power Systems 19(4), 2053–2059 (Nov. 2004)

    Article  Google Scholar 

  28. Fountas, N.A., Hatziargyriou, N.D., Valavanis, K.P.: Hierarchical time-extended Petri Nets as a generic tool for power system restoration. IEEE Trans. Power Syst. 12(2), 837–843 (May 1997)

    Article  Google Scholar 

  29. Wu, J.S., Liu, C.C., Liou, K.L., Chu, R.F.: A Petri Net algorithm for scheduling of generic restoration actions. IEEE Trans. Power Syst. 12(1), 69–76 (Feb. 1997)

    Article  Google Scholar 

  30. Chen, C.S., Lin, C.H., Tsai, H.Y.: A rule-based expert system with colored Petri Net models for distribution system service restoration. IEEE Trans. Power Syst. 17(4), 1073–1080 (Nov. 2002)

    Article  Google Scholar 

  31. Ke, Y.L., Chen, C.S., Kang, M.S., Wu, J.S., Lee, T.E.: Power distribution system switching operation scheduling for load balancing by using colored Petri Nets. IEEE Trans. Power Syst. 19(1), 629–635 (Feb. 2004)

    Article  Google Scholar 

  32. Wu, J.S.: A Petri-Net algorithm for multiple contingencies of distribution system operation. IEEE Trans. Power Syst. 13(3), 1164–1171 (Aug. 1998)

    Article  Google Scholar 

  33. Chen, C.S., Ke, Y.L., Wu, J.S., Kang, M.S.: Application of Petri Nets to solve distribution system contingency by considering customer load patterns. IEEE Trans. Power Syst. 17(2), 417–423 (May 2002)

    Article  Google Scholar 

  34. Pinto de Sa, J.L., Paiva, J.P.S.: Design and verification of concurrent switching sequences with Petri Nets. IEEE Trans. Power Deliv. 5(4), 1766–1772 (Oct. 1990)

    Article  Google Scholar 

  35. Pinto de Sa, J.L., Paiva, J.P.S.: A multitasking software architecture to implement concurrent switching sequences designed with Petri Nets. IEEE Trans. Power Deliv. 6(3), 1058–1064 (July 1991)

    Article  Google Scholar 

  36. Brand, K.P., Kopainsky, J.: Systematic design of automation, protection, and control in substations. IEEE Trans. PAS 103(9), (Sep. 1984)

  37. Pinto de Sa, J.L., Damasio, J.: Coordination of automatic control functions in transmission substations using Petri Nets. IEEE Trans. Power Deliv. 7(1), 262–268 (Jan. 1992)

    Article  Google Scholar 

  38. Yang, C.L., Yokoyama, A., Sekine, Y.: Fault section estimation of power system using colored and timed Petri Nets. In: Proc. Expert Systems Applications to Power Systems, Australia, pp. 321–326 (Jan. 1993)

  39. Salchfar, H., Rodick, R.: A new and fast electric power generating system reliability evaluation model using Petri Nets. Int. Journal of Reliability, Quality and Safety Engineering 1(4), 459–473 (1994)

    Article  Google Scholar 

  40. Anschuetz Henryk HPSIM, http://www.winpesim.de/petrinet/e/hpsim_e.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Georgilakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgilakis, P.S., Katsigiannis, J.A., Valavanis, K.P. et al. A Systematic Stochastic Petri Net Based Methodology for Transformer Fault Diagnosis and Repair Actions. J Intell Robot Syst 45, 181–201 (2006). https://doi.org/10.1007/s10846-006-9033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9033-9

Key words

Navigation