Skip to main content
Log in

A Neural-based Model for Fast Continuous and Global Robot Location

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

One of the problems in the field of mobile robotics is the estimation of the robot position in an environment. This paper proposes a model for estimating a confidence interval of the robot position in order to compare it with the estimation made by a dead-reckoning system. Both estimations are fused using heuristic rules. The positioning model is very valuable in estimating the current robot position with or without knowledge about the previous positions. Furthermore, it is possible to define the degree of knowledge of the robot previous position, making it possible to adapt the estimation by varying this knowledge degree. This model is based on a one-pass neural network which adapts itself in real time and learns about the relationship between the measurements from sensors and the robot position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armingol, J.M.: Localización geométrica de robots móviles autónomos. PhD Thesis. Universidad Carlos III de Madrid. Leganes, 1997. In Spanish

  2. Arras, O.K., Tomatis, N.: Improving Robustness and Precision in Mobile Robot Localization by Using Laser Ranger Finding and Monocular Vision, 3rd European Workshop on Advanced mobile Robots, 1999

  3. Betke, M., Gurvits, L.: Mobile Robot localization using landmarks. IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)

    Article  Google Scholar 

  4. Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A.K. Peters, Ltd., Wellesley, MA (1996)

    MATH  Google Scholar 

  5. Bulata, H., Devy, M.: Incremental Construction of a Landmark-based and topological model of indoor environments by a mobile robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, 1996

  6. Burgard, W., Fox, D., Henning, D., Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids. 14th National Conf. on Artificial Intelligence 2, 896–901 (1996)

    Google Scholar 

  7. Burgard, W., Derr, A., Fox, D., Cremers, A.B.: Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach. IROS98 Int. Conf. on Intelligent Robots and Systems, pp. 730–735 (1998)

  8. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artif. Intell. 114(1–2), 3–55 (1999)

    Article  MATH  Google Scholar 

  9. Cahut, L., Valvanis, K.F., Deliç, H.,: Sonar resolution based environment mapping. IEEE Int. Conf. on Robotics and Automation, pp. 2541–2547 (May 1998)

  10. Castellanos, J.A.: Mobile Robot Localization and Map Building: A Multisensor Fusion Approach. Kluwer, pp. 224 (Mar 2000)

  11. Chong, K.S., Kleeman, L.: Sonar based map building for mobile robot. IEEE Int Conf. on Robotics and Automation, pp. 1700–1705 (April 1997)

  12. Cox, I.J.: Blanche: An autonomous robot vehicle for structured environments. IEEE Trans. Robot. Autom. 2, 978–982 (April 1988)

    Google Scholar 

  13. Cox, I.J.: Blanche – An experiment in Guidance and navigation of and Autonomous Mobile Robot. IEEE Trans. Robot. Autom. 7(3), 193–204 (1991)

    Article  Google Scholar 

  14. Crowley, J.L., Wallner, F., Schiele, B.: Positioning estimation using principal components of range data. ICRA98, Int. Conf. on Robotics and Automation, pp. 3121–3128 (1998)

  15. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–242 (June 2001)

    Article  Google Scholar 

  16. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press (2000)

  17. Einsele, T.: Real-time self-location in unknown indoor environments using a panorama laser range finder. IEEE Int. Conf. on Intelligent Robots and Systems, pp. 697–702 (1997)

  18. Fenwick, J.W., Newman, P.M., Leonard, J.J.: Cooperative concurrent mapping and localization. Int. Conf. Robot. Autom. 2, 1810–1817 (May 2002)

    Google Scholar 

  19. Forsberg, J., Larsson, U., Wernersson, A.: On mobile robot navigation in cluttered rooms using the range weighted hough transform. IEEE Robot. Autom. Soc. Mag. 2(1), 18–26 (March 1995)

    Article  Google Scholar 

  20. Fox, D., Burgard, W., Dellaert, F., Thurn, S.: Monte Carlo Localization: Efficient Position Estimation for mobile Robots. 16th National Conf. on Artificial Intelligence (1999)

  21. Freund, E., Dierks, F.: Map-Based Free Navigation for Autonomous Vehicles. Int. J. Syst. Sci. 27(8), 753–770 (1996)

    Article  MATH  Google Scholar 

  22. Gerecke, U., Sharkey, N., Sharkey, A.: Reliable robot localization with an ensemble approach. In: Proceedings of the Second International Symposium on Robotics and Automation (ISRA-2000), Monterrey, Mexico, pp. 515–520, 2000

  23. Gerecke, U., Sharkey, N.E., Sharkey A.J.C.: Common evidence vectors for self-organized ensemble localization. Neurocomputing 55(3/4), 499–519 (Oct 2003)

    Google Scholar 

  24. Guivant, J., Nebot, E., Baiker, S.: Autonomous navigation and map building using laser range sensors in outdoor applications. J. Robot. Syst. 17(10), 565–583 (Oct 2000)

    Article  MATH  Google Scholar 

  25. Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–258 (June 2001)

    Article  Google Scholar 

  26. Guivant, J., Nebot, E.: Improving computational and memory requirements of simultaneous localization and map building algorithms. Int. Conf. Robot. Autom. pp. 2731–2736 (2002)

  27. Gutierrez-Osuna, R., Janet Jason, A., Luo Ren, C.: Modeling ultrasonic range sensors for localization of autonomous mobile robots. Trans. Ind. Electron. 45(4), 654–662 (Aug 1998)

    Article  Google Scholar 

  28. Hasselblad, V.: Estimation of parameters for a mixture of normal distribution. Technometrics 8(3), 431–445 (August 1966)

    Article  MathSciNet  Google Scholar 

  29. Jensfelt, P., Wijk, J., Austin, D.J., Magnus, A.: Experiments on augmenting condensation for mobile robot localization. IEEE Trans. Robot. Autom. 17(5), 748–760 (Oct 2001)

    Article  Google Scholar 

  30. Jensfelt, P., Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17(5), 748–761 (Oct 2001)

    Article  Google Scholar 

  31. Kaelbling, L., Cassandra, A., Kurien, J.: Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. IEEE Int. Conf. on Intelligent Robots and Systems (1996)

  32. Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous robot. IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1442–1447 (1991)

  33. Montemerlo, M., Thrun, S.: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. In AAAI 2002

  34. Muñoz, A.J., Gonzalez, J.: Two-dimentional landmark-based position estimation from a single image. IEEE Trans. Robot. Autom. 16(5), 542–552 (Oct 2000)

    Google Scholar 

  35. Newman, P., Leonard, J., Tardos, J.D., Neira, J.: Explore and return: experimental validation of real-time concurrent mapping and localization. Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1802–1809 (2002)

  36. Reina. A.J.: Navegación de robots móbiles mediante escaner láser radial. Tesis doctoral. Universidad de Malaga, 2001

  37. Sánchez, A., Sanz Bobi, M.A. Real Time Dynamic Ellipsoidal Neural Network (RTDENN). Int. Conf. on signal processing, robotics and automation (ISPRA), Jun 2002

  38. Sánchez, A.: Environment modelling for autonomous robots using artificial intelligence techniques. In Spanish. PhD Universidad Pontificia Comillas. Spain, Dec 2002

  39. Sánchez, A., Sanz Bobi, M.A.:Global path planning in Gaussian probabilistic maps. J. Intell. Robot. Syst. 40(1), 89–102 (May 2004)

    Article  Google Scholar 

  40. Sarabia, A.: Introducción a la estadística. Ediciones ICAI, 1984. In Spanish

  41. Schiele, B., Crowley, J.L.: A comparison of position estimation techniques using occupancy grids. In: Proc of the IEEE International Conference on Robotics and Automation, pp. 1628–1634 (1994)

  42. Schultz, A., Adams, W., Yamauchi, B.: Integrating exploration, localization, navigation and planning with a common representation. Auton. Robots. 6(3), 293–308 (May 1999)

    Article  Google Scholar 

  43. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  44. Tardos, J.D., Neira, J., Newman, P., Leonard, J.: Robust mapping and localization in indoor environments using sonar data. Int. J. Rob. Res. 21(4) (2002)

  45. Thrun, S., Burgard, B., Fox, D.: A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn. Auton. Robots. 31(5), 1–25 (1998)

    Google Scholar 

  46. Thurn, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. IEEE Int. Conf. on Robotics and Automation, pp. 321–328 (April 2000)

  47. Townsend, N.W., Tarassenko, L.: Neural networks for mobile robot localisation using infra-red range sensing. Neural Comput. Appl. 8(2), 114–135 (1999)

    Article  Google Scholar 

  48. Vlassis, N., Kröse, B.: Robot environment modeling via principal component regression. IROS99 IEEE Int. Conf. on Intelligent Robots and Systems, pp. 677–682 (1999)

  49. Zhang, L., Ghosh, B.K.: Line segment based map building and localization using 2D laser rangefinder. IEEE Int. Conf. on Robotics and Automation, pp. 2538–2543 (April 2000)

  50. Zunino, G., Christensen, H.I.: Simultaneous localization and mapping in realistic environments. SLAM Summer School 2002. Stockholm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Sánchez Miralles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miralles, Á.S., Bobi, M.Á.S. A Neural-based Model for Fast Continuous and Global Robot Location. J Intell Robot Syst 46, 221–243 (2006). https://doi.org/10.1007/s10846-006-9046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9046-4

Key words

Navigation