Skip to main content
Log in

Contribution to Human Multi-Robot System Interaction Application to a Multi-Robot Mission Editor

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The general objective of this work is to model and conceive a system allowing a user, more particularly a disabled person, to give a mission to a team of robots in a structured indoor type environment and to determine the whole processes necessary to its execution. The missions are of assistance type, objects displacement and site monitoring. The increase of the robots number involves additional management difficulties, thus there is a crucial need for providing an interface adapted for the input and the supervision of this type of mission. We propose a model based on two levels of abstraction through which the user request is analyzed. A first level takes care of the syntactic and semantics checkings by validating and supplementing the request. A second level takes care of the geometrical checkings and validates the passage of the robots in formation for the transport of an object. The result is then presented to the user. The originality of this work stands mainly in the approach of the human multi-robot system interaction. The proposed system is participative, interactive and incremental, with an active assistance to the mission specification. A solution for setting up the levels of the model is proposed as well as examples of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ani:02: From Animals to Animats 7, Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior. Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.A. (eds). (2002)

  2. Ani:04: From Animals to Animats 8, Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior. Hallam, J., Meyer, J.A., Schaal, S., Ijspeert, A.J., Billard, A., Vijayakumar, S. (eds). (2004)

  3. Arai, T., Ogata, H., Susuki, T.: Collision avoidance among multiple robots using virtual inpedance. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 479–485 (1989)

  4. Arai, T., Pagello, E., Parker, L.: Editorial: Advances in multi-robot systems. IEEE Trans. Robot. Autom. 18(5), 655–6617 (2002)

    Article  Google Scholar 

  5. Asama, H., Matsumoto, A., Ishida, Y.: Design of an autonomous and distributed robot system. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 283–290. (1989)

  6. Balch, T., Parker, L.: Robot teams: From polymorphism to diversity. Balch, T., Parker, L. (eds.) (2002)

  7. Beni, G., Hackwood, S.: Stationary waves in cyclic swarms. In: IEEE Int. Symp. on Intelligent Control, pp. 234–242. (1992)

  8. Bonabeau, E., Theraulaz, G.: L’intelligence en essaim (2000)

  9. Bourhis, G., Horn, O., Habert, O., Pruski, A.: An autonomous vehicle for people with motor disabilities. IEEE Robot. Autom. Mag. 7(1), 20–28 (2001)

    Article  Google Scholar 

  10. Brooks, R.: A robust layered control system for a mobile robot. J. Robot. Autom. 2(1), 14–237 (1986)

    Google Scholar 

  11. Colle, E., Rybarczyk, Y., Hoppenot, P.: ARPH: An assistant robot for disabled people. In: IEEE International Conference on Systems, Man and Cybernetics (2002)

  12. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  13. Drogoul, A., Ferber, J.: From tom-thumb to the dockers: Some experiments with foraging robots. In: From Animals to Animats 2, Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp. 451–459. (1993)

  14. Fong, T., Thorpe, C., Baur, C.: Collaboration, dialogue, and human–robot interaction. In: Proceedings of the International Symposium on Robotics Research, Lorne, Victoria, Australia (2001)

  15. Fukuda, T., Nakagawa, S.: A dynamically reconfigurable robotic system (concept of a system and optimal configurations. In: Proceedings of IECON’87, pp. 588–595. (1987)

  16. Gerkey, B., Mataric, M.: A framework for studying multi-robot task allocation. In: Proceedings of the Second International Naval Research Laboratory Workshop on Multi-Robot Systems. Washington, District of Columbia, pp. 3367–3373. (2003)

  17. Goldberg, D., Mataric, M.: Coordinating mobile robot group behavior using a model of interaction dynamics. In: Autonomous Agents 1999. Seattle, Washington, pp. 100–107. (1999)

  18. Iocchi, L., Nardi, D., Salerno, M.: Reactivity and deliberation: A survey on multi-robot systems, (2001)

  19. Jones, H., Rock, S.: Dialogue-based human–robot interaction for space construction teams. In: Proceedings of the 2002 IEEE Aerospace Conference, Big Sky, Montana, (2002)

  20. Jones, H., Synder, M.: Supervisory control of multiple robots based on a real-time strategy game interaction paradigm. In: ACM Computer Supported Cooperative Work (2002)

  21. Lemay, M.: Systèmes flous pour le contrôle d’une formation de robots, (2003)

  22. Mataric, M., Sukhatme, G., Ostergaard, E.: Sold!: Auction methods for multi-robot coordination. IEEE Trans. Robot. Autom. 5(18), 758–786 (2002). (special issue on Advances in Multi-Robot Systems)

    Google Scholar 

  23. Parker, L.: ALLIANCE: An architecture for fault-tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  24. Parker, L.: Current state of the art in distributed autonomous mobile robotics. Distributed Autonomous Robotics Systems 18(4), 3–12 (2000)

    Google Scholar 

  25. Parker, L., Bekey, G., Barhen, J.: Distributed Autonomous Robotisystems, vol. 4. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  26. Piaget, J.: La Naissance de l’Intelligence chez l’Enfant, (1936)

  27. Premvuti, S., Yuta, S.: Considerations on the cooperation of multiple autonomous mobile robots. In: Proceedings of the IEEE Int. Workshop on Intelligent Robots and Systems, pp. 59–63. (1989)

  28. Rybarczyk, Y.: Etude de l’appropriation d’un système de tél´eopération dans l’optique d’une coopération homme-machine. PhD thesis, Université d’Evry-Val d’Essonne, Evry, France (2004)

  29. Rybski, P., Stoeter, S., Gini, M., Hougen, D., Papanikolopoulos, N.: Performance of a distributed robotic system using shared communication channels. IEEE Trans. Robot. Autom. 18(5), 211–225 (2002)

    Article  Google Scholar 

  30. Schultz, A., Parker, L.: Multi-robot Systems: From Swarms to Intelligent Automata. Kluwer (2002)

  31. Sellem, P., Dalgalarrondo, A.: Extension d’une architecture de contrôle derobot mobile à un système distribué de robots, (1999)

  32. Tan, J., Xi, N.: Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks. In: Proceedings of SPIE symposium on Defense and Security, (2004)

  33. Tews, A., Wyeth, G.: MAPS: A system for multi-agents coordination. Adv. Robot. 14(1), 37–50 (2002) (VSP/Robotics Society of Japan)

    Article  Google Scholar 

  34. Wang, P.: Navigation strategies for multiple autonomous mobile robots. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 486–493. (1989)

  35. Yamashita, A., Fukushi, M., Ota, J., Arai, T., Asama, H.: Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment. In: Proceedings of 2000 IEEE Int. Conf. on Robotics and Automation, pp. 3144–3151. (2000)

  36. Yamashita, A., Ota, J., Arai, T., Asama, H.: Motion planning of multiple mobile robots for cooperative manipulation and transportation. IEEE Trans. Robot. Autom. 19(2), 223–237 (2003)

    Article  Google Scholar 

  37. Yu, U., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: Antecedents and directions. Technical Report 950049, (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Saïdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saïdi, F., Pradel, G. Contribution to Human Multi-Robot System Interaction Application to a Multi-Robot Mission Editor. J Intell Robot Syst 45, 343–368 (2006). https://doi.org/10.1007/s10846-006-9048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9048-2

Key words

Navigation