Skip to main content
Log in

Upper Bounding Estimation for Robustness to the Parameter Uncertainty with Trigonometric Function in Trajectory Control of Robot Arms

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a new robust control law is considered for controlling robot manipulators subjected to uncertainties. The control law is derived as a result of analytical solution from the Lyapunov function, thus stability of the uncertain system is guaranteed. Apart from previous studies, uncertainty bound and adaptation gain matrix are updated in time with the estimation law to control the system properly and uncertainty bound is determined using a trigonometric function of robot kinematics, inertia parameters and tracking error while adaptation gain matrix is determined using a trigonometric function of robot kinematics and tracking error. Application to a two-link robotic manipulator is presented and numerical simulations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

q, \(\dot{q}\) and \(\ddot{q}\), ɛR n :

Vectors of joint position, velocity and acceleration of robot

M(q) ɛR n×n, \(C(q,\ \dot{q})\dot{q}\) and G(q), ɛR n :

Inertia matrix, centripetal/coriolis and gravitational vectors

q d, \(\dot{q}_{d}\) and \(\ddot{q}_{d}\), ɛR n :

Desired position, velocity and acceleration vectors

\(\tilde{q} = q_{d} - q,\;\dot{{\tilde{q}}} = \dot{q}_{d} - \dot{q},\;\varepsilon R^{n}\) :

Actual position and velocity errors

\(Y(q,\ \dot{q},\ \ddot{q}),\;\varepsilon R^{{nxp}}\) :

A matrix which is a function of joint positions, velocities and accelerations

\(Y(q,\ \dot{q},\ \dot{q}_{r},\ \ddot{q}_{r})\varepsilon R^{{nxp}}\) :

A control action of inverse dynamics type which ensures an approximate compensation of nonlinear effects and joint decoupling

Λ, K, and B ɛR n×n :

Positive definite diagonal matrixes

K σ ɛR n :

A vector of PD action

ɛ > 0:

A positive number

π 0 ɛR p :

A fixed vector of nominal, loaded arm parameters and their upper bounds

ρ ɛR :

Parametric uncertainty

\(\hat{\rho }(t)\varepsilon R^{p}\) :

Estimated upper bound

α, β, γ :

Real numbers

γ 1, γ 2, ... γ p :

Real numbers

where λ 1, λ 2, .... λ p and α 1, α 2, ....α p :

Real numbers

a, b ɛR :

Real numbers

References

  1. Bekit, B.W., Whidborne, J.F., Seneviratne, L.D.: Smooth robust control or robot manipulators. In: Proceeding of Mechatronics 98, pp. 275–280. Elsevier, Amsterdam (1998)

  2. Burkan, R., Uzmay, İ.: Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. J. Robotics Autonomous Syst. 45, 99–110 (2003)

    Article  Google Scholar 

  3. Corless, M., Leitmann, G.: Continuous feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Contr. 26, 1139–1144 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of robot manipulator. Int. J. Rob. Res. 6, 16–28 (1987)

    Article  Google Scholar 

  5. Egeland, O., Godhavn, J.M.: A note on Lyapunov stability for adaptive robot control. IEEE Trans. Autom. Contr. 39(8), 1671–1673 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jaritz, A., Spong, M.W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Technol. 4(6), 627–640 (1996)

    Article  Google Scholar 

  7. Koo, K.M., Kim, J.H.: Robust control of robot manipulators with parametric uncertainty. IEEE Trans. Autom. Contr. 39(6), 1230–1233 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Leitmann, G.: On the efficiency of nonlinear control in uncertain linear system. J. Dyn. Syst. Meas. Control 102, 95–102 (1981)

    Article  MathSciNet  Google Scholar 

  9. Liu, G., Goldenberg, A.A: On robust saturation control of robot manipulators. In: Proc. 32nd Conf. Decision and Contr., San Antonio, Texas, pp. 2115–2120, 1993

  10. Liu, G., Goldenberg, A.A.: Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans. Control Syst. Technol. 4, 384–393 (1996)

    Article  Google Scholar 

  11. Middleton, R.H., Goodwith, G.C.: Adaptive computed torque control for rigid link manipulators. Syst. Control Lett. 10, 9–16 (1988)

    Article  MATH  Google Scholar 

  12. Mnif, F., Boukas, E.K., Saad, M.: Robust control for constrained robot manipulators. J. Dyn. Syst. Meas. Control 121, 129–133 (1999)

    Article  Google Scholar 

  13. Ortega, R., Spong, M.W.: Adaptive motion control of rigit robots: A tutorial. Automatica 25, 877–888 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Slotine, J.E.: The robust control of robot manipulators. Int. J. Rob. Res. 4, 49–63 (1985)

    Article  Google Scholar 

  15. Slotine, J.J., Li, W.: On the adaptive control of robotic manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  16. Spong, M.W.: On the robust control of robot manipulators. IEEE Trans. Automat. Control 37, 1782–1786 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Spong, M.W., Ortega, R., Kelley, R.: Comment on adaptive manipulator control: A case study. IEEE Trans. Automat. Control 35(6), 761–762 (1990)

    Article  MATH  Google Scholar 

  18. Spong, M.W., Vidyasagar, M.: Robust linear compensator design for nonlinear robotic control. IEEE J. Robot. Autom. 3(4), 345–350 (1987)

    Article  Google Scholar 

  19. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  20. Tang, Y., Tomizuka, M., Guerrero, G.: Robust control of rigid robots. In: Proceedings of the 36th Conference on Decision & Control, San Diego, California USA, pp. 791–796 (1997)

  21. Tang, Y., Tomizuka, M., Guerrero, G., Montemayor, G.: Decentralized robust control of mechanical systems. IEEE Trans. Automat. Contr. 45(4), 771–776 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yaz, E.: Comments on the robust control of robot manipulators. IEEE Trans. Automat. Contr. 38(38), 511–512 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zenieh, S., Corless, M.: Simple robust tracking controllers for robotic manipulators. In: Proc. SYROCO'94, Capari, Italy, Sept., pp. 193–198 (1994)

  24. Zenieh, S., Corless, M.: A simple robust r-α tracking controllers for uncertain fully-actuated mechanical systems. J. Dyn. Syst. Meas. Control 119, 821–825 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Burkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkan, R. Upper Bounding Estimation for Robustness to the Parameter Uncertainty with Trigonometric Function in Trajectory Control of Robot Arms. J Intell Robot Syst 46, 263–283 (2006). https://doi.org/10.1007/s10846-006-9061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9061-5

Key words

Navigation