Skip to main content
Log in

Design and Developmental Metrics of a ‘Skin-Like’ Multi-Input Quasi-Compliant Robotic Gripper Sensor Using Tactile Matrix

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Slip-resistant robust grasping of objects during remote manipulation remains one of the major open issues in robotics. Finer measurement of tangential force and slippage need to be considered for the task planning and control of robotic gripper in operation. Design and development of such a multi-sensory tactile array is reported in this paper, which is aimed for direct use in an instrumented jaw intelligent robot gripper for potentially hazardous radioactive environments. A new design has been reported in the paper, wherein sensing members of the prototype follow a combination of beam (bending) and truss-type (axial deformation) behavior under external loadings. Various characteristics of the sensor, viz. condition number, static and dynamic stiffness, sensitivity and repeatability have been evaluated, based on the results from field trials of the prototype. Besides the comparatively larger prototype, a miniaturized version of the sensor has also been developed and tested for object grasping in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nafari, A., Danilov, A., Rödjegård, H., Enoksson, P., Olin, H.: A micro-machined nano-indentation force sensor. Sens. Actuators A 123–124, 44–49 (Sept. 2005)

    Google Scholar 

  2. Bayo, E., Stubbe, J.R.: Six-axis force sensor evaluation and a new type of optimal frame truss design for robotic applications. J. Robot. Syst. 6(2), 191–208 (1989)

    Article  MATH  Google Scholar 

  3. Blasquez, G., Douziech, C., Pons, P.: Analysis, characterization and optimization of temperature coefficient parameters in capacitive pressure sensors. Sens. Actuators A 93(1), 44–47 (August 2001)

    Article  Google Scholar 

  4. Bracke, W., Merken, P., Puers, R., Van Hoof, C.: Design methods and algorithms for configurable capacitive sensor interfaces. Sens. Actuators A 125(1), 25–33 (Oct. 2005)

    Article  Google Scholar 

  5. Brock, D.L.: Enhancing the dexterity of a robot hand using controlled slip. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 249–251, 1988

  6. Butler, J.C., Vigliotti, A.J., Verdi F.W., Walsh, S.M.: Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sens. Actuators A 102(1–2), 61–66 (Dec. 2002)

    Article  Google Scholar 

  7. Chang, S.-P., Lee, J.-B., Allen, M.G.: Robust capacitive pressure sensor array. Sens. Actuators A 101(1–2), 231–238 (Sept. 2002)

    Article  Google Scholar 

  8. Claudio, M.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatron. 5(3), 235–243 (Sept. 2000)

    Article  MathSciNet  Google Scholar 

  9. Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. Int. J. Rob. Res. 17(4), 402–417 (April 1998)

    Article  Google Scholar 

  10. Dornfeld, D., Handy, C.: Slip detection using acoustic emission signal analysis. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1868–1875, 1987

  11. Du, L., Kwon, G., Arai, F., Fukuda, T., Itoigawa, K., Tukahara, Y.: Structure design of micro touch sensor array. Sens. Actuators A 107(1), 7–13 (Oct. 2003)

    Article  Google Scholar 

  12. Fearing, R.S., Hollerbach, J.M.: Basic solid mechanics for tactile sensing. Int. J. Rob. Res. 4(3), 40–54 (Fall 1985)

    Article  Google Scholar 

  13. Fearing, R.S.: Tactile sensing mechanisms. Int. J. Rob. Res. 9(3), 3–23 (June 1990)

    Article  Google Scholar 

  14. Heerens, W.C.: Multi-terminal capacitive sensors. J. Phys., E J. Sci. Instrum. 15, 137–141 (1982)

    Article  Google Scholar 

  15. Heerens, W.C.: Application of capacitance techniques in sensor design. J. Phys., E J. Sci. Instrum. 19, 897–906 (1986)

    Article  Google Scholar 

  16. Howe, R.D., Cutkosky, M.R.: Sensing skin acceleration for slip and texture perception. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 145–150, 1989

  17. Howard, R.N., Lee, M.H.: A survey of robot tactile sensing technology. Int. J. Rob. Res. 8(3), 3–30 (June 1989)

    Article  Google Scholar 

  18. Huh, K., Stein, J.L.: A non-normality measure of the condition number for monitoring and control. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 119(2), 217–222 (June 1997)

    Article  MATH  Google Scholar 

  19. Ko, W.H., Bao, M.-H., Hong, Y.-D.: A high sensitivity integrated-circuit capacitive pressure transducer. IEEE Trans. Electron Devices ED-29(1), 48–56 (Jan. 1982)

    Article  Google Scholar 

  20. Kosel, P.B., Munro, G.S., Vaughan, R.: Capacitive transducers for accurate displacement control. IEEE Trans. Instrum. Meas. IM-30(2), 114–123 (June 1981)

    Google Scholar 

  21. Lee, Y.S., Wise, K.D.: A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity. IEEE Trans. Electron Devices ED-29(1), 42–48 (Jan. 1982)

    Article  Google Scholar 

  22. Marko, H., Darko, B., Andreja, B., Janez, B., Janez, H., Jena, C., Walter, S., Heinz, H., Roland, R., Leszek, G., Andrej, D., Jaroslaw, K.: Thick-film resistors on various substrates as sensing elements for strain-gauge applications. Sens. Actuators A 107(3), 261–272 (Nov. 2003)

    Article  Google Scholar 

  23. Nilsson, M.: Tactile sensors and other distributed sensors with minimal wiring complexity. IEEE/ASME Trans. Mechatron. 5(3), 253–257 (Sept. 2000)

    Article  Google Scholar 

  24. Novak, J.L.: Initial design and analysis of a capacitive sensor for shear and normal force measurement. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 137–144, 1989

  25. Orhan, A., Tayfun, A., Khalil, N.: A wireless batch sealed absolute capacitive pressure sensor. Sens. Actuators A 95(1), 29–38 (Dec. 2001)

    Article  Google Scholar 

  26. Russell, A.R.: Compliant-skin tactile sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1645–1648, 1987

  27. Ryutaro, O., Hideki, N.: Strain sensors of shape memory alloys using acoustic emissions. Sens. Actuators A 122(1), 39–44 (July 2005)

    Article  Google Scholar 

  28. Sander, C.S., Knutti, J.W., Meindl, J.D.: A monolithic capacitive pressure sensor with pulse–period output. IEEE Trans. Electron Devices ED-27(5), 927–930 (May 1980)

    Article  Google Scholar 

  29. Sato, H., Fukuda, T., Arai, F., Itoigawa, K., Tsukahara, Y.: Parallel-beam sensor/actuator unit and its application to the gyroscope. IEEE/ASME Trans. Mechatron. 5(3), 266–271 (Sept. 2000)

    Article  Google Scholar 

  30. Smith, M.J.S., Bowman, L., Meindl, J.D.: Analysis, design and performance of a capacitive pressure sensor IC. IEEE Trans. Biomed. Eng. BME-33(2), 163–174 (Feb. 1986)

    Article  Google Scholar 

  31. Sultan, C., Skelton, R.: A force and torque tensegrity sensor. Sens. Actuators A 112(2–3), 220–231 (May 2004)

    Article  Google Scholar 

  32. Suzuki, K., Najafi, K., Wise, K.D.: A 1024-element high performance silicon tactile imagers. IEEE Trans. Electron Devices 37(8), 1852–1859 (August 1990)

    Article  Google Scholar 

  33. Svinin, M.M., Uchiyama, M.: Optimal geometric structures of force/torque sensors. Int. J. Rob. Res. 14(6), 560–573 (Dec. 1995)

    Article  Google Scholar 

  34. Uchiyama, M., Bayo, E., Palma-Villalon, E.: A systematic design procedure to minimize a performance index for robot force sensors. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 113, 388–394 (Sept. 1991)

    Article  Google Scholar 

  35. Ueda, J., Ikeda, A., Ogasawara, T.: Grip-force control of an elastic object by vision-based slip-margin feedback during the incipient slip. IEEE Trans. Robot. Autom. 21(6), 1139–1147 (Dec. 2005)

    Google Scholar 

  36. Voyles, R.M., Morrow, J.D., Khosla, P.K.: The shape from motion approach to rapid and precise force/torque sensor calibration. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 119(2), 229–235 (June 1997)

    Article  MATH  Google Scholar 

  37. Zhou, M.-X., Huang, Q.-A., Qin M.: Modeling, design and fabrication of a triple-layered capacitive pressure sensor. Sens. Actuators A 117(1), 71–81 (Jan. 2005)

    Article  Google Scholar 

  38. Zhu, F., Spronck, J.W.: A simple capacitive displacement sensor. Sens. Actuators A 26(1), 265–269 (March 1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanik Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, D. Design and Developmental Metrics of a ‘Skin-Like’ Multi-Input Quasi-Compliant Robotic Gripper Sensor Using Tactile Matrix. J Intell Robot Syst 46, 305–337 (2006). https://doi.org/10.1007/s10846-006-9062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9062-4

Key words

Navigation