Skip to main content
Log in

Decentralized Navigation Functions for Multiple Robotic Agents with Limited Sensing Capabilities

  • Unmanned Systems Paper
  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The decentralized navigation function methodology, established in our previous work for navigation of multiple holonomic agents with global sensing capabilities is extended to the case of local sensing capabilities. Each agent plans its actions without knowing the destinations of the others and the positions of those agents lying outside its sensing neighborhood. The stability properties of the closed loop system are checked via Lyapunov stability techniques for nonsmooth systems. The collision avoidance and global convergence properties are verified through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belta, C., Kumar, V.: Abstraction and control of groups of robots. IEEE Trans. Robot. 20(5), 865–875 (2004)

    Article  Google Scholar 

  2. Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–232 (2000)

    Article  Google Scholar 

  3. Ceragioli, F.: Discontinuous Ordinary Differential Equations and Stabilization. Ph.D. thesis, Department of Mathematics, Universita di Firenze (1999)

  4. Clarke, F.: Optimization and Nonsmooth Analysis. Addison-Wesley, Reading, MA (1983)

    MATH  Google Scholar 

  5. Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized stabilization and collision avoidance of multiple air vehicles with limited sensing capabilities. In: Proceedings of the 2005 American Control Conference, pp. 4667–4772 (2005)

  6. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: Decentralized feedback stabilization and collision avoidance of multiple agents. Technical report, NTUA, http://users.ntua.gr/ddimar/TechRep0401.pdf (2004)

  7. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feddema, J., Schoenwald, D.: Decentralized control of cooperative robotic vehicles. IEEE Trans. Robot. Autom. 18(5), 852–864 (2002)

    Article  Google Scholar 

  9. Filippov, A.: Differential equations with discontinuous right-hand sides. Kluwer, Boston, MA (1988)

    MATH  Google Scholar 

  10. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Automat. Contr. 48(4), 692–696 (2003)

    Article  MathSciNet  Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, UK (1996)

    Google Scholar 

  12. Hurtado, J.E., Robinet III, D.H., Dohrmann Simic, C.R., Goldsmith, S.Y.: Decentralized control for a swarm of vehicles performing source localization. J. Intell. Robot. Syst. 41(1), 1–18 (2004)

    Article  Google Scholar 

  13. Project HYBRIDGE: http://www.nlr.nl/public/hosted-sites/hybridge/

  14. Inalhan, G., Stipanovic, D.M., Tomlin, C.J.: Decentralized optimization, with application to multiple aircraft coordination. In: 41st IEEE Conf. Decision and Control (2002)

  15. Project ISWARM: http://microrobotics.ira.uka.de/

  16. Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11, 412–442 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lawton, J.R., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  18. Loizou, S.G., Kyriakopoulos, K.J.: Closed loop navigation for multiple holonomic vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2861–2866 (2002)

  19. Loizou, S.G., Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized feedback stabilization of multiple nonholonomic agents. In: 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 3012–3017 (2004)

  20. Project MICRON: http://wwwipr.ira.uka.de/~micron/

  21. Milnor, J.: Morse Theory. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1963)

    Google Scholar 

  22. Olfati-Saber, R., Murray, R.M.: Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In: 42st IEEE Conf. Decision and Control, pp. 2022–2028 (2003)

  23. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  24. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat. Contr. 49(9), 1910–1914 (1994)

    Article  MathSciNet  Google Scholar 

  25. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents. In: 42st IEEE Conf. Decision and Control, pp. 2010–2015 (2003)

  26. Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: 2005 IEEE International Conference on Robotics and Automation, pp. 4143–4148 (2005)

  27. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Automat. Contr. 43(4), 509–521 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wangermann, J.P., Stengel, R.F.: Optimization and coordination of multiagent systems using principled negotiation. J. Guid. Control Dyn. 22(1), 43–50 (1999)

    Article  Google Scholar 

  29. Zavlanos, M.M., Kyriakopoulos, K.J.: Decentralized motion control of multiple mobile agents. In: 11th Mediterranean Conference on Control and Automation, Rhodes, Greece (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimos V. Dimarogonas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimarogonas, D.V., Kyriakopoulos, K.J. Decentralized Navigation Functions for Multiple Robotic Agents with Limited Sensing Capabilities. J Intell Robot Syst 48, 411–433 (2007). https://doi.org/10.1007/s10846-006-9113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9113-x

Key words

Categories

Navigation