Skip to main content
Log in

A Prey Catching and Predator Avoidance Neural-Schema Architecture for Single and Multiple Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper presents a biologically inspired multi-level neural-schema architecture for prey catching and predator avoidance in single and multiple autonomous robotic systems. The architecture is inspired on anuran (frogs and toads) neuroethological studies and wolf pack group behaviors. The single robot architecture exploits visuomotor coordination models developed to explain anuran behavior in the presence of preys and predators. The multiple robot architecture extends the individual prey catching and predator avoidance model to experiment with group behavior. The robotic modeling architecture distinguishes between higher-level schemas representing behavior and lower-level neural structures representing brain regions. We present results from single and multiple robot experiments developed using the NSL/ASL/MIRO system and Sony AIBO ERS-210 robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbib, M.A.: Levels of modeling of mechanisms of visually guided behavior. Behavior Brain Science 10, 407–465 (1987)

    Article  Google Scholar 

  2. Arbib, M.A.: The Metaphorical Brain 2. Wiley, New York (1989)

    MATH  Google Scholar 

  3. Arbib, M.A.: Neural mechanisms of visuomotor coordination: the evolution of Rana computatrix. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)

  4. Arbib, M.A.: Schema theory. In: Shapiro, S. (ed.) The Encyclopedia of Artificial Intelligence, vol. 2, pp. 1427–1443 (2nd edn). Wiley, New York (1992)

    Google Scholar 

  5. Arbib, M.A.: Schema theory. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 993–998 (2nd edn). MIT Press, Cambridge, MA (2002)

    Google Scholar 

  6. Arbib, M.A., Cobas, A.: Prey-catching and predator avoidance 1: maps and schemas. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)

  7. Arkin, R.C.: Neuroscience in motion: the application of Schema Theory to mobile robotics. In: Ewert, J.P., Arbib, M.A. (eds.) Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots. Plenum, New York, pp. 649–672 (1989)

    Google Scholar 

  8. Arkin, R.C.: Behavioral based Robotics. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  9. Arkin, R.C., Ali, K., Weitzenfeld, A., Cervantes-Perez, F.: Behavior models of the praying mantis as a basis for robotic behavior. In: Journal of Robotics and Autonomous Systems, vol. 32(1), pp. 39–60. Elsevier, New York (2000)

  10. Balch, T.: Teambots 2.0, http://www.cs.cmu.edu/~trb/TeamBots/ (2000)

  11. Balch, T., Arkin, R.C.: Motor schema-based formation control for multiagent teams. IEEE Trans. Robot. Autom. (1999)

  12. Barrera, A., Weitzenfeld, A.: Bio-inspired model of robot adaptive learning and mapping. Proceedings IROS 2006—International Robots and Systems Conference, Beijing, China, Oct 9–13 (2006)

  13. Bekey, G.: Autonomous Robots: From Biological Inspiration to Implementation and Control. MIT Press, Cambridge, MA (2005)

    Google Scholar 

  14. Betts, B.: The toad optic tectum as a recurrent on-center off-surround neuralnet with quenching threshold, ICNN, IEEE International Conference and Neural Networks, vol 2, pp. 47–54, July 24–27 (1988)

  15. Cao, Y.U., Fukunaga, A.S., Kahn, A.B.: Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27, Kluwer Academic, Boston, MA (1997)

    Google Scholar 

  16. Cervantes-Perez, F., Franco, A., Velazquez, S., Lara, N.: A Schema Theoretic Approach to Study the ‘Chantitlaxia’ Behavior in the Praying Mantis, Proceeding of the First Workshop on Neural Architectures and Distributed AI: From Schema Assemblages to Neural Networks, USC, October 19–20 (1993)

  17. Cervantes-Pérez, F., Guevara-Pozas, D., Herrera, A.: Modulation of prey-catching behavior in toads: data and modeling. In: Arbib, M.A., Ewert, J.P. (eds.) Visual structures and integrated functions. Springer Verlag Research Notes in Neural Computing, vol. 3, pp. 397–415 (1991)

  18. Cervantes-Perez, F., Herrera, A., García, M.: Modulatory effects on prey-recognition in amphibia: a theoretical ‘experimental study’. In: Rudoman, P., Arbib, M.A., Cervantes-Perez, F., Romo, R. (eds.) Neuroscience: From Neural Networks to Artificial Intelligence. Springer Verlag Research Notes in Neural Computing, vol. 4, pp. 426–449 (1993)

  19. Cervantes-Perez, F., Lara, R., Arbib, M.A.: A neural model of interactions subserving prey–predator discrimination and size preference in anuran amphibia. J. Theor. Biol. 113, 117–152 (1985)

    MathSciNet  Google Scholar 

  20. Cobas, A., Arbib, M.A.: Prey-catching and predator avoidance 2: Modeling the medullary hemifield deficit. In: Visual Structures and Integrated Functions. Springer-Verlag, Berlin Heidelberg (1991)

  21. Cobas, A., Arbib, M.A.: Prey-catching and Predator-avoidance in Frog and Toad: Defining the Schemas. J. Theor. Biol. 157, 271–304 (1992)

    Article  Google Scholar 

  22. Collett, T.: Picking a route: Do toads follow rules or make plans? In: Ewert, J.P., Capranica, R.R., Ingle, D.J. (eds.) Advances in Vertebrate Neuroethology, pp. 321–330 (1983)

  23. Corbacho, F., Arbib, M.: Learning to detour. Adapt. Behav. 3(4), 419–468 (1995)

    Article  Google Scholar 

  24. Corbacho, F., Weitzenfeld, R. In: The Neural Simulation Language NSL, A System for Brain Modeling, pp. 189–206. MIT Press, Cambridge, MA (2002), July

  25. Didday, R.L.: A model of visuomotor mechanisms in the frog optic tectum. Math. Biosci. 30, 169–180 (1976)

    Article  Google Scholar 

  26. Ewert, J.P.: Neuroethology: An Introduction to the Neurophysiological Fundamentals of Behavior. Springer Verlag, Berlin, Heidelberg, New York (1980)

    Google Scholar 

  27. Ewert, J.P.: Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas, H. (ed.) Comparative neurology of the optic tectum, pp. 247–416. Plenum, New York (1984)

    Google Scholar 

  28. Ewert, J.P.: Commands neurons and command systems. In: Arbib, M.A. (ed.) The handbook of brain theory and neural networks. The MIT Press, Cambridge, Mass (1995)

    Google Scholar 

  29. Ewert, J.P., Kehl, W.: Configural prey-selection by individual experience in toad Bufo-Bufo. J. Physiol. 126, 105–114 (1978)

    Google Scholar 

  30. Grüsser, O.J., Grüsser-Cornehls, U.: Neurophysiology of the anuran visual system. In: Llinás, R., Precht, W. (eds.) Frog Neurobiology, pp. 297–385. Springer Verlag, Berlin, Heidelberg, New York (1976)

    Google Scholar 

  31. Ingle, D.: Brain mechanisms of visual localization by frogs and toads. In: J.-P. Ewert, Capranica, R.R., Ingle, D.J. (eds.) Advances in Vertebrate Neuroethology, pp. 177–226 (1983)

  32. Lara, R., Arbib, M.A.: A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Biol. Cybern. 51, 223–237 (1985)

    Article  Google Scholar 

  33. Mech, D.L.: The Wolf. The Ecology and Behaviour of Endangered Species. The Natural History Press (1970)

  34. NSL Web Sites, http://www.neuralsimulationlanguage.org/ and http://nsl.usc.edu (2002)

  35. Parker, L.: Current State of the Art in Distributed Autonomous Mobile Robotics, Proceedings International Symposium on Distributed Autonomous Robotic Systems, pp. 3–12. Knoxville, TN (2000)

  36. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model, ACM SIGGRAPH ‘87 Conference Proceedings, Anaheim, California (1978)

  37. Scalia, F., Fite, K.V.: A retinotopic analysis of the central connections of the optic nerve in the frog. J. Comp. Neurol. 158, 455–478 (1974)

    Article  Google Scholar 

  38. Sgorbissa, A., Arkin, R.C.: Local Navigation Strategies for a Team of Robots. Robotica 21(5) pp. 461–473. Cambridge University Press, Cambridge, UK (2003)

  39. Steenstrup, M., Arbib, M.A., Manes, E.G.: Port automata and the algebra of concurrent processes. J. Computer Syst. Sci. 27(no. 1), 29–50, Aug (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Teeters, J.L., Arbib, M.A.: A model of the anuran retina relating interneurons to ganglion cell responses. Biol. Cybern. 64, 197–207 (1991)

    Article  Google Scholar 

  41. Vallesa, A., Weitzenfeld, A.: Multi-agent formations in a pack of wolves hunting model. Proceedings 1st Latin American Robotics Symposium, LARS 2004, Mexico City (2004)

  42. Wang, D.: A neural model of synaptic plasticity underlying short-term and long-term habituation. Adapt. Behav. 2, 111–129 (1993)

    Article  Google Scholar 

  43. Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000)

    Article  Google Scholar 

  44. Weitzenfeld, A., ASL: Hierarchy, Composition, Heterogeneity, and Multi-Granularity in Concurrent Object-Oriented Programming. Proceedings of the Workshop on Neural Architectures and Distributed AI: From Schema Assemblages to Neural Networks, USC, October 19–20 (1993)

  45. Weitzenfeld, A., Prey Approach and Predator Avoidance Single and Multiple Robot Videos, ftp://ftp.itam.mx/pub/alfredo/videos/PreyPred (2007)

  46. Weitzenfeld, A.: From Schemas to Neural Networks: A Multi-level Modeling Approach to Biologically-Inspired Autonomous Robotic Systems, Journal of Robotics and Autonomous Systems, Elsevier (2007)

  47. Weitzenfeld, A., Arbib, M., Alexander, A.: NSL—Neural Simulation Language: A System for Brain Modeling, MIT Press, Cambridge, MA (2002)

    Google Scholar 

  48. Weitzenfeld, A., Cervantes, F., Sigala, R.: NSL/ASL: Simulation of Neural based Visuomotor Systems. In Proc. of IJCNN 2001 International Joint Conference on Neural Networks, Washington DC, July 14–19 (2001)

  49. Weitzenfeld, A., Gutierrez-Nolasco, S., Venkatasubramanian, N.: MIRO: An Embedded Distributed Architecture for Biologically inspired Mobile Robots, Proc ICAR-03, 11th International Conference on Advanced Robotics, June 30–July 3, Coimbra, Portugal (2003)

  50. Weitzenfeld, A., Peguero, O., Gutiérrez, S., NSL/ASL: Distributed Simulation of Modular Neural Networks, MICAI 2000 Mexican International Conference on Artificial Intelligence, Acapulco, Mexico, April 14–18, LNAI 1793, Springer-Verlag (2000)

  51. Weitzenfeld, A., Vallesa, A., Flores, H.: A Biologically-Inspired Wolf Pack Multiple Robot Hunting Model, Proc of Latin American Robotics Symposium LARS 2006, Santiago Chile, Oct 26–27, (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Weitzenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitzenfeld, A. A Prey Catching and Predator Avoidance Neural-Schema Architecture for Single and Multiple Robots. J Intell Robot Syst 51, 203–233 (2008). https://doi.org/10.1007/s10846-007-9183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9183-4

Keywords

Navigation