Skip to main content
Log in

Autonomous Path Planning and Experiment Study of Free-floating Space Robot for Target Capturing

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Space robotic systems are expected to play an increasingly important role in the future. The robotic on-orbital service, whose key is the capturing technology, becomes research hot in recent years. In this paper, the authors propose an autonomous path planning method for target capturing. The task is described in Cartesian space and it can drive the manipulator to approach the target along the closest path. Firstly, the target feature is extracted based on the measured information via the hand-eye camera, and the target pose (position and orientation) and velocities (linear velocity and angular velocity) are estimated using Kalman filtering technology. Then, a numerically feasible approach is presented to plan the manipulator motion and avoid the dynamic singularities, which are transformed into real-time kinematic singularities avoiding problem. Thirdly, the potential disturbance on the base due to the manipulator’s motion is estimated, and the joint rates are autonomously adjusted to reduce the disturbance if it is beyond the allowed bound. At last, a ground experiment system is set up based on the concept of dynamic emulation and kinematic equivalence. With the experiment system, the autonomous target capturing experiments are conducted. The experiment results validate the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimpfer, D., Spehar, P.: STS-71 Shuttle/Mir Gnc mission overview. Adv. Astronaut. Sci. 93, 441–460 (1996)

    Google Scholar 

  2. Hirzinger, G., Brunner, B., Dietrich, J., et al.: Sensor-based space robotics-rotex and its telerobotic features. IEEE Trans. Robot. Autom. 9, (5), 649–663 (1993)

    Article  Google Scholar 

  3. Hirzinger, G., Landzettel, K., Brunner, B., et al.: Dlr’s robotics technologies for on-orbit servicing. Adv. Robot. 18(2), 139–174 (2004)

    Google Scholar 

  4. Hirzinger, G., Brunner, B., Landzettel, K., et al.: Space robotics – Dlr’s telerobotic concepts, lightweight arms and articulated hands. Auton. Robots 14, 127–145 (2003)

    Article  MATH  Google Scholar 

  5. Landzettel, K., Albu-Schaffer, A., Preusche, C., et al.: Robotic on-orbit servicing – Dlr’s experience and perspective. In: Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 4587–4594. Beijing, China (2006)

  6. Yoshida, K.: Engineering Test Satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Rob. Res. 22, (5), 321–335 (2003)

    Article  Google Scholar 

  7. Wilson, J.R.: Satellite hopes ride on orbital express. Aerosp. Am., 30–35 (2007)

  8. Boeing Web: Orbital express – Mission updates. http://www.boeing.com/ids/advanced_systems/orbital/updates.html (2007)

  9. Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7, (4), 500–514 (1991)

    Article  Google Scholar 

  10. Xu, W.F., Liang, B., Li, C., et al.: Non-holonomic path planning of free-floating robot based on genetic algorithm. In: Proc. IEEE International Conference on Robotics and Biomimetics, pp. 1471–1476. Kunming, China (2006)

  11. Yoshida, K., Umetani, Y.: Control of space free-flying robot. In: Proc. The 29th Conference on Decision and Control, pp. 97–102. Honolulu, Hawaii (1990)

  12. Agrawal, S.K., Chen, M.Y., Annapragada, M.: Modeling and simulation of assembly in a free-floating work environment by a free-floating robot. J. Mech. Des. 118, (1), 115–120 (1996)

    Google Scholar 

  13. Papadopoulous, E., Moosavian, S.A.A.: Dynamics and control of multi-arm space robots during chase and capture operations. In: Proc. IEEE International Conference on Intelligent Robots and Systems, pp. 1554–1561 (1994)

  14. Nagamatsu, H., Kubota, T., Nakatani, I.: Capture strategy for retrieval of a tumbling satellite by a space robotic manipulator. In: Proc. IEEE Conference on Robotic and Automation, pp. 70–75. Minneapolis, Minnesota (1996)

  15. Nagamatsu, H., Kubota, T., Nakatani, I.: Autonomous retrieval of a tumbling satellite based on predictive trajectory. In: Proc. International Conference on Robotics and Automation, pp. 3074–3079. Albuquerque, New Mexico (1997)

  16. Huang, P.F., Xu, Y.S., Liang, B.: Tracking trajectory planning of space manipulator for capturing operation. Int. J. Adv. Robotic Syst. 3, (3), 211–218 (2006)

    Google Scholar 

  17. McCourt, R.A., de Silva, C.W.: Autonomous robotic capture of a satellite using constrained predictive control. IEEE/ASME Trans. Mechatron. 11, (6), 699–708 (2006)

    Article  Google Scholar 

  18. Xu, Y.S., Kanade, T.: Space Robotics: Dynamics and Control. Kluwer, Boston, MA (1992)

    Google Scholar 

  19. Yoshida, K., Hashizume, K., Abiko, S.: Zero reaction maneuver: flight validation with ETS-VII Space Robot and extension to kinematically redundant arm. In: Proc. IEEE International Conference on Robotics and Automation, pp. 441–446. Piscataway, USA (2001)

  20. Umetani, Y., Yoshida, K.: Resolved motion rate control of space manipulators with generalized Jacobian Matrix. IEEE Trans. Robot. Autom. 5, (3), 303–314 (1989)

    Article  Google Scholar 

  21. Papadopoulos, E., Dubowsky, S.: Dynamic singularities in the control of free-floating space manipulators. J. Dyn. Syst. Meas. Control 115, (1), 44–52 (1993)

    Google Scholar 

  22. Li, C., Liang, B., Xu, W.F., et al.: Autonomous trajectory planning of free-floating robot for capturing space target. In: Proc. the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1008–1013. Beijing, China. (2006)

  23. Fishler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, (6), 381–395 (1981)

    Article  Google Scholar 

  24. Zhou, X., Zhu, F.: A note on unique solution conditions of the P3p problem. Chinese Journal of Computers (in Chinese) 26, (12), 1696–1701 (2003)

    MathSciNet  Google Scholar 

  25. Hao, Y.M., Zhu, F., Ou, J.J: 3D visual methods for object pose measurement. Journal of Image and Graphics 12, 1247–1251 (2002)

    Google Scholar 

  26. Chesi, G., Hashimoto, K.: A self-calibrating technique for visual servoing. In: Proc. 41st IEEE Conference on Decision and Control, pp. 2878–2883. Las Vegas, Nevada USA (2002)

  27. Chen, C., Stitt, S., Zheng, Y.F.: Robotic eye-in-hand calibration by calibrating optical axis and target pattern. J. Intell. Robot. Syst. 12, (2), 155–173 (1995)

    Article  Google Scholar 

  28. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 108, 163–171 (1986)

    Article  MATH  Google Scholar 

  29. Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped leastsquares methods. IEEE Trans. Syst. Man Cybern SMC-16, (1), 93–101 (1986)

    Article  Google Scholar 

  30. Senft, V., Hirzinger, G.: Redundant motions of non-redundant robots a new approach to singularity treatment. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1553–1558. Nagoya, Japan (1995)

  31. Nenchev, D.N., Tsumaki, Y., Uchiyama, M.: Singularity-consistent parameterization of robot motion and control. Int. J. Rob. Res. 19, (2), 159–182 (2000)

    Article  Google Scholar 

  32. Xu, W.F., Liang, B., Xu, Y.S., et al.: A ground experiment system of free-floating space robot for capturing space target. J. Intell. Robot. Syst. 48, (2), 187–208 (2007)

    Article  MathSciNet  Google Scholar 

  33. Xue, L., Qiang, W., Liang, B., et al.: A robotic testbed for positioning and attitude accuracy test of space manipulator. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5085–5090. Beijing, China (2006)

  34. Malis, E., Chaumette, F., Boudet, S.: 2d 1/2 visual servoing stability analysis with respect to camera calibration errors. In: Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 691–697. Victoria, B.C., Canada, (1998)

  35. Chang, W.: Precise positioning of binocular eye-to-hand robotic manipulators. J. Intell. Robot. Syst. 49, (3), 219–236 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Liu, Y., Liang, B. et al. Autonomous Path Planning and Experiment Study of Free-floating Space Robot for Target Capturing. J Intell Robot Syst 51, 303–331 (2008). https://doi.org/10.1007/s10846-007-9192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9192-3

Keywords

Navigation