Skip to main content

Advertisement

Log in

Supervised and Reinforcement Evolutionary Learning for Wavelet-based Neuro-fuzzy Networks

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This study presents a wavelet-based neuro-fuzzy network (WNFN). The proposed WNFN model combines the traditional Takagi–Sugeno–Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This study adopts the non-orthogonal and compactly supported functions as wavelet neural network bases. A novel supervised evolutionary learning, called WNFN-S, is proposed to tune the adjustable parameters of the WNFN model. The proposed WNFN-S learning scheme is based on dynamic symbiotic evolution (DSE). The proposed DSE uses the sequential-search-based dynamic evolutionary (SSDE) method. In some real-world applications, exact training data may be expensive or even impossible to obtain. To solve this problem, the reinforcement evolutionary learning, called WNFN-R, is proposed. Computer simulations have been conducted to illustrate the performance and applicability of the proposed WNFN-S and WNFN-R learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  2. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13, 71–101 (1993)

    Google Scholar 

  3. Lin, C.J., Lin, C.T.: An ART-based fuzzy adaptive learning control network. IEEE Trans. Fuzzy Syst. 5, (4), 477–496 (1997) (Nov)

    Article  Google Scholar 

  4. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22, (6), 1414–1427 (1992) (Nov/Dec)

    Article  MathSciNet  Google Scholar 

  5. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

    Google Scholar 

  6. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  7. Lin, C.J., Chin, C.C.: Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. Syst. Man Cybern. B 34, (5), 2144–2154 (2004) (Oct)

    Article  Google Scholar 

  8. Lin, F.J., Lin, C.H., Shen, P.H.: Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive. IEEE Trans. Fuzzy Syst. 9, (5), 751–759 (2001) (Oct)

    Article  Google Scholar 

  9. Takagi, H., Suzuki, N., Koda, T., Kojima, Y.: Neural networks designed on approximate reasoning architecture and their application. IEEE Trans. Neural Netw. 3, (5), 752–759 (1992)

    Article  Google Scholar 

  10. Mizutani, E., Jang, J.-S.R.: Coactive neural fuzzy modeling. In: Proc. Int. Conf. Neural Netw., pp. 760–765 (1995)

  11. Lin, C.J., Chin, C.C.: Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. Syst. Man Cybern. B 34, (5), 2144–2154 (2004) (Oct)

    Article  Google Scholar 

  12. Juang, C.F.: A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans. Fuzzy Syst. 10, (2), 155–170 (2002) (Apr)

    Article  MathSciNet  Google Scholar 

  13. Karr, C.L.: Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proc. 4th Conf. Genetic Algorithms, pp. 450–457 (1991)

  14. Homaifar, A., McCormick, E.: Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, (9), 129–139 (1995) (May)

    Article  Google Scholar 

  15. Lee, M.A., Takagi, H.: Integrating design stages of fuzzy systems using genetic algorithms. Proc. IEEE Int. Conf. Fuzzy Syst. 1, 612–617 (1993) (Apr)

    Google Scholar 

  16. Lin, C.T., Jou, C.P.: GA-based fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans. Syst. Man Cybern. B 30, (2), 276–289 (2000) (Apr)

    Google Scholar 

  17. Juang, C.F., Lin, J.Y., Lin, C.T.: Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Trans. Syst. Man Cybern. B 30, (2), 290–302 (2000) (Apr)

    Article  MathSciNet  Google Scholar 

  18. Ho, D.W.C., Zhang, P.A., Xu, J.: Fuzzy wavelet networks for function learning. IEEE Trans. Fuzzy Syst. 9, (1), 200–211 (2001)

    Article  Google Scholar 

  19. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Mach. Learn. 22, 11–32 (1996)

    Google Scholar 

  20. Jang, J.-S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, New York (1997) (Ch. 17)

    Google Scholar 

  21. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems Evolutionary Tuning and Learning Of Fuzzy Knowledge Bases. Advances in Fuzzy Systems – Applications and Theory, vol 19World Scientific, New Jersey (2001)

    Google Scholar 

  22. Barto, A.G., Sutton, R.S.: Landmark learning: an illustration of associative search. Biol. Cybern. 42, 1–8 (1981)

    Article  MATH  Google Scholar 

  23. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuron like adaptive elements that can solve difficult learning control problem. IEEE Trans. Syst. Man Cybern. SMC-13, (5), 834–847 (1983)

    Google Scholar 

  24. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ (1994)

    Google Scholar 

  25. Wang, C.H., Wang, W.Y., Lee, T.T., Tseng, P.S.: Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control. IEEE Trans. Syst. Man Cybern. 25, (5), 841–851 (1995) (May)

    Article  Google Scholar 

  26. Farag, W.A., Quintana, V.H., Lambert-Torres, G.: A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems. IEEE Trans. Neural Netw. 9, (5), 756–767 (1998) (Sept)

    Article  Google Scholar 

  27. Lin, C.T., Lee, C.S.G.: Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans. Fuzzy Syst. 2, 46–63 (1994) (Feb)

    Article  Google Scholar 

  28. Cannon Jr., R.H.: Dynamics of Physical Systems. McGraw-Hill, New York (1967)

    Google Scholar 

  29. Cheok, K.C., Loh, N.K.: A ball-balancing demonstration of optimal and disturbance-accommodating control. IEEE Contr. Syst. Mag. 7, 54–57 (1987)

    Article  Google Scholar 

  30. Whitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning for neuro control problems. Mach. Learn. 13, 259–284 (1993)

    Article  Google Scholar 

  31. Hauser, J., Sastry, S., Kokotovic, P.: Nonolinear control via approximate input–output linearization: the ball and beam example. IEEE Trans. Automat. Contr. 37, 392–398 (1992) (Mar)

    Article  MathSciNet  Google Scholar 

  32. Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective genetics-based machine learning for linguistic rule extraction. Inf. Sci. 136, (1–4), 109–133 (2001)

    Article  MATH  Google Scholar 

  33. Ishibuchi, H., Nojima, Y.: Analysis of interpretability–accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approx. Reason. 44, (1), 4–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Liu, YC. & Lee, CY. Supervised and Reinforcement Evolutionary Learning for Wavelet-based Neuro-fuzzy Networks. J Intell Robot Syst 52, 285–312 (2008). https://doi.org/10.1007/s10846-008-9214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9214-9

Keywords

Navigation