Skip to main content

Advertisement

Log in

Issues on Autonomous Agents from a Roboticle Perspective

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous robots, like living systems, must be adaptive in nature if we want them to preserve their integrity while completing their mission. The challenge to survive in their environment is better accomplished if they are open systems, interacting with the environment by exchanging matter, energy, information, and so on. The roboticle framework, presented here forth, is an attempt to model how the autonomous robot control unit works. It borrows from living systems the idea that sensing and acting on the environment can be recognized as a mechanism exchanging energy with the environment in order to maintain an highly organized internal control structure to resist to external applied perturbations. The necessary energy balancing is provided by an autopoietic loop which is fed by the energy entering the robot through its sensor devices and it is dissipated by its effectors for properly acting in the environment. The autopoietic loop is also responsible of the adaptive properties of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adami, C.: Introduction to Artificial Life. Springer, New York (1998)

    MATH  Google Scholar 

  2. Anderson, T.L., Donath, M.: Animal behaviour as a paradigm for developing robot autonomy. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 145–168. MIT, Cambridge (1990)

    Google Scholar 

  3. Arkin, R.C.: Integrating behavoural perceptual and world knowledge in reactive navigation. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 105–122. MIT, Cambridge (1990)

    Google Scholar 

  4. Arkin, R.C.: Behavior-Based Robotics. MIT, Cambridge (1998)

    Google Scholar 

  5. Beer, R.D.: A dynamical system perspective on agent-environment interaction. Artif. Intell. 72(1–2), 173–215 (1995)

    Article  Google Scholar 

  6. Breitenberg, V.: Vehicles, Experiments in Synthetic Psychology. MIT, New York (1996)

    Google Scholar 

  7. Brooks, R.: A layered intelligent control system for a mobile robot. IEEE J. Robot. Autom. RA-2, 14–23 (1986)

    MathSciNet  Google Scholar 

  8. Brooks, R.A.: Intelligence without reason. IJCAI 1, 569–595 (1991)

    Google Scholar 

  9. Connell, J.H.: Minimalist Mobile Robotics. Number 5 in Perspective in Artificial Intelligence. Academic, London (1990)

    Google Scholar 

  10. D’Angelo, A., Montesello, F., Pagello, E.: Building autonomy within self-organizing dynamical agents. In: Pagello, E., Groen, F., Arai, T., Dillmann, R., Stentz, A. (eds.) Intelligent Autonomous Systems 6 (IAS-6), Venezia, 25–28 July, pp. 43–50. IOS, Amsterdam (2000)

    Google Scholar 

  11. D’Angelo, A., Montesello, F., Pagello, E.: Can representation be liberated from symbolism: modeling robot actions with roboticles. In: Horn, W. (ed.) Proceedings of European Conference on Artificial Intelligence (ECAI-2000), pp. 658–662, Berlin, 20–26 August 2000

  12. D’Angelo, A., Ota, J., Pagello, E.: How intelligent behavior can emerge from a group of roboticles moving around. In: Proceedings of Intelligent Robots and Sistems (IROS’03), pp. 1733–1738, Las Vegas, 27–31 October 2003

  13. D’Angelo, A., Pagello, E.: Making collective behaviours to work through implicit communication. In: Casals, A., Dillmann, R., Giralt, G. (eds.) Proceedings of International Conference on Robotics and Automation (ICRA-05), pp. 81–87, Barcelona, 18–22 April 2005

  14. Langton, C. (ed.): Artificial Life: An Overview. MIT, Cambridge (1995)

    Google Scholar 

  15. Haken, H.: Synergetics: an approach to self-organization. In: Yates, F.E. (ed.) Self-Organizing Systems. Plenum, New York (1987)

    Google Scholar 

  16. Jaeger, H.: The dual dynamics design scheme for behaviour-based robots: a tutorial. Technical Report 966, GMD, St. Augustin (D) (1996)

  17. Kaelbling, L.P., Rosenschein, S.J.: Action and planning in embedded agents. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 35–48. MIT, Cambridge (1990)

    Google Scholar 

  18. Kay, J.: Self_organization in living systems, Chapter 2. Ph.D. thesis, Ontario, Canada (1984)

  19. Scott Kelso, J.A.: Dynamic Patterns: The Self-Organization of Brain and Behaviour. Bredford Book. MIT, Cambridge (1995)

    Google Scholar 

  20. Maes, P.: Situated agents can have goals. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 49–70. MIT, Cambridge (1990)

    Google Scholar 

  21. McFarland, D., Bosser, U.: Intelligent Behavior in Animals and Robots. MIT, Cambridge (1993)

    Google Scholar 

  22. Moravec, H.: Mind Age: The Future of Robot and Human Intelligence. Harvard University Press, Cambridge (1988)

    Google Scholar 

  23. Pagello, E., D’Angelo, A., Montesello, F., Garelli, F., Ferrari, C.: Cooperative behaviors in multi-robot systems through implicit communication. Robot. Auton. Syst. 29(1), 65–77 (1999)

    Article  Google Scholar 

  24. Pagello, E., Ferrari, C., D’Angelo, A., Montesello, F.: Intelligent multirobot systems perfoming cooperative tasks. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, 12–15 October 1999

  25. Perelson, A.S.: Network thermodynamics. An overview. Biophys. J. 15(7), 667–685 (1975)

    Article  Google Scholar 

  26. Pfeifer, R.: Building fungus eaters: design principles of autonomous agents. In: Maes, P., Mataric, M.J., Meyer, J.A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats 4, Simulation of Adaptive Behaviour (SAB96), pp. 3–12, Cape Cod, 9–13 September (1996)

  27. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT, Cambridge (1999)

    Google Scholar 

  28. Prigogine, I., Stengers, I.: Order out of Chaos. Bantam, New York (1984)

    Google Scholar 

  29. Schoener, G., Dose, M., Engels, C.: Dynamycs of behaviour: theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16(2–4), 213–245 (1995)

    Article  Google Scholar 

  30. Sipper, M.: Fifty years research on self-replication: an overview. Artif. Life 4(3), 237–257 (1998)

    Article  Google Scholar 

  31. Steels, L.: Discovering the competitors. Adapt. Behav. 4(2), (1996)

  32. Steels, L.: Intelligence—dynamics and representation. In: Steels, L. (ed.) The biology and Technology of Intelligent Autonomous Agents, Nato ASI. Springer, Berlin (1995)

    Google Scholar 

  33. Steinhage, A., Schoener, G.: The dynamic approach to autonomous robot navigation. In: IEEE International Symposium on Industrial Electronics (ISIE’97), pp. 7–12. IEEE, Piscataway (1997)

    Google Scholar 

  34. Varela, F.: Describing the logic of living: the adequacy and limitations of the idea of autopoiesis. In: Zeleny, M. (ed.) Autopoiesis: A Theory of Living Organization, pp. 36–48. North Holland, New York (1981)

    Google Scholar 

  35. Varela, F., Maturana, H., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Angelo.

Additional information

H. Yuasa died on September 2002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angelo, A., Pagello, E. & Yuasa, H. Issues on Autonomous Agents from a Roboticle Perspective. J Intell Robot Syst 52, 389–416 (2008). https://doi.org/10.1007/s10846-008-9223-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9223-8

Keywords

Navigation