Skip to main content
Log in

H-Infinity Static Output-feedback Control for Rotorcraft

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The problem of stabilization of an autonomous rotorcraft platform in a hover configuration subject to external disturbances is addressed. Necessary and sufficient conditions are presented for static output-feedback control of linear time-invariant systems using the H-Infinity approach. Simplified conditions are given which only require the solution of two coupled matrix design equations. This paper also proposes a numerically efficient solution algorithm for the coupled design equations to determine the output-feedback gain. A major contribution is that an initial stabilizing gain is not needed. The efficacy of the control law and the disturbance accommodation properties are shown on a rotorcraft design example. The helicopter dynamics do not decouple as in the fixed-wing aircraft case, so that the design of helicopter flight controllers with a desirable intuitive structure is not straightforward. In this paper an output feedback approach is given that allows one to selectively close prescribed multivariable feedback loops using a reduced set of the states. Shaping filters are added that improve performance and yield guaranteed robustness and speed of response. This gives direct control over the design procedure and performance. Accurate identification of the System parameters is a challenging task for rotorcraft control, addition of loop shaping facilitates implementation engineers to counteract unmodeled high frequency dynamics. The net result yields control structures that have been historically accepted in the flight control community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basar, T.P., Bernard, P.: Optimal Control and Related Minimax Design Problems, pp. 4–6, 33–48. Birkhauser, Berlin, Germany (1991)

    MATH  Google Scholar 

  2. Cao, Y., Lam, J., Sun, Y.: Static output feedback stabilization: an ILMI approach. IFAC J. Automatica 34(12), 1641–1645 (1998). doi:10.1016/S0005-1098(98)80021-6

    Article  MATH  Google Scholar 

  3. Chen, B.: Fourth Half Yearly Progress Report for the TYIA 2003 Project on Nonlinear Control Methods for Flight Control Systems of Flying Vehicles, DSTA, NUS, and ST AEROSPACE, Nov. 2005

  4. Chen, B.M.: Robust and H∞ Control. Springer, Berlin (2000)

    Google Scholar 

  5. Colaneri, P., Geromel, J.C., Locatelli, A.: Control Theory and Design, an RH2 and RH∞ Viewpoint, pp. 87–261. Academic Press Interscience, San Diego (1997)

    Book  Google Scholar 

  6. Doyle, J.H., Glover, K., Khargonekar, P., Francis, B.: State-space solutions to standard H2 and H∞ control problems. IEEE Trans. Automat. Contr. 34(8), 831–847 (1989). doi:10.1109/9.29425

    Article  MATH  MathSciNet  Google Scholar 

  7. El Ghaoui, L., Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Automat. Contr. 42(8), 1171–1176 (1997). doi:10.1109/9.618250

    Article  MATH  Google Scholar 

  8. Gadewadikar, J., Lewis, F., Abu-Khalaf, M.: Necessary and sufficient conditions for H-∞ static output-feedback control. J. Guid. Control Dyn. 29(4), 915–920 (2006). doi:10.2514/1.16794

    Article  Google Scholar 

  9. Gadewadikar, J., Lewis, F., Xie, L., Kucera, V., Abu-Khalaf, M.: Parameterization of all stabilizing H∞ static state-feedback gains: application to output-feedback design. Automatica 43(9), 1597–1604 (2007) September

    Article  MATH  MathSciNet  Google Scholar 

  10. Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI Control Tool Box. MATLAB., Mathworks, Inc., Natick, MA (1995)

    Google Scholar 

  11. Geromel, J.C., Peres, P.L.D.: Decentralized load-frequency control. IEE Proc. 132(D, 5), 225, 230 (1985)

    MATH  Google Scholar 

  12. Geromel, J.C., de Souza, C.C., Skelton, R.E.: Static output feedback controllers: stability and convexity. IEEE Trans. Automat. Contr. 43(1), 120–125 (1998). doi:10.1109/9.654912

    Article  MATH  Google Scholar 

  13. Hall, W.E. Jr., Bryson, A.E. Jr.: The inclusion of rotor dynamics in controller design for helicopters. J. Aircr. 10(4), 200–206 (1972). doi:10.2514/3.60214

    Article  Google Scholar 

  14. Holl, C., Scherer, C.: Computing optimal fixed order H∞-synthesis values by matrix sum of squares relaxation. In: 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 3147–3153, 2004

  15. Johnson, E.N., Kannan, S.K.: Adaptive trajectory control for autonomous helicopters. AIAA J. Guid. Control Dyn. 28(3), 524–538 (2005)

    Article  Google Scholar 

  16. Johnson, W.: Helicopter Theory. Dover Publications, Mineola, NY (1994)

    Google Scholar 

  17. Kim, Y.H., Lewis, F.L.: High-level Feedback Control with Neural Networks, pp. 55–75. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  18. Klienman, D.L.: On an iterative technique for Riccati equations computations. IEEE Trans. Automat. Contr. 13(1), 114–115 (1968)

    Article  Google Scholar 

  19. Knobloch, H.W., Isidori, A., Flockerzi, D.: Topics in control theory, pp. 43–49, 58–67, 99–111. Birkhauser, Berlin, Germany (1993)

    MATH  Google Scholar 

  20. Kucera, V., De Souza, C.E.: A necessary and sufficient condition for output feedback stabilizability. IFAC J. Automatica 31(9), 1357–1359 (1995)

    Article  MATH  Google Scholar 

  21. Lewis, F.L., Syrmos, V.L.: Optimal Control, 2nd edn., pp. 359–375. Wiley, New York (1995)

    Google Scholar 

  22. Moerder, D.D., Calise, A.J.: Convergence of a numerical algorithm for calculating optimal output feedback gains. IEEE Trans. Automat. Contr. 30(9), 900–903 (1985)

    Article  MATH  Google Scholar 

  23. Nakwan, K., Calise, A.J., Corban, J.E., Prasad, J.V.R.: Adaptive Output Feedback for Altitude Control of an Unmanned Helicopter Using Rotor RPM. In: AIAA Guidance, Navigation and Control Conference, August 2004

  24. Prempain, E., Postlethwaite, I.: Static H∞ loop shaping control of a fly-by-wire helicopter. In: 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 1188–1195, 2004

  25. Smerlas, A.J., Walker, D.J., Postlethwaite, I., Strange, M.E., Howitt, J., Gubbels, A.W.: Evaluating. H∞ controllers on the NRC Bell 205 fly-by-wire helicopter. Control Eng. Pract. 9(1), 1–10 (2001). doi:10.1016/S0967-0661(00)00088-5

    Article  Google Scholar 

  26. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn., pp. 403–419. Wiley Interscience, New York (2003)

    Google Scholar 

  27. Syrmos, V.L., Abdallah, C., Dorato, P.: Static output feedback: a survey. In: Proceedings of 33rd IEEE Conference on Decision and Control, Orlando, FL, pp. 837–842, 1994

  28. Trofino-Neto, A., Kucera, V.: Stabilization via static output feedback. IEEE Trans. Automat. Contr. 38(5), 764–765 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Linda, W., Suresh, K.K., Sander, S., Guler, M., Heck, B., Prasad, J.V.R., Schrage, D.P., Vachtsevanos, G.: An open platform for reconfigurable control. In: Samad, T., Balas, G.J. (eds.) Software-Enabled Control: Information Technology for Dynamical Systems. IEEE Press, Piscataway (2001)

    Google Scholar 

  30. Zames, G.: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Automat. Contr. 26(2), 301–320 (1981). doi:10.1109/TAC.1981.1102603

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmay Gadewadikar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadewadikar, J., Lewis, F.L., Subbarao, K. et al. H-Infinity Static Output-feedback Control for Rotorcraft. J Intell Robot Syst 54, 629–646 (2009). https://doi.org/10.1007/s10846-008-9279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9279-5

Keywords

Navigation