Skip to main content
Log in

Motion Control of a Golf Swing Robot

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we discuss our simulation and empirical study of a golf swing motion controller for a two-link golf swing robot. We distinguish two variants of the whole golf swing termed as hitting problem and stopping problem. For the hitting problem arising from backswing and downswing, we map the task into the output of a target dynamic system—a harmonic oscillator—under energy control. For the stopping problem that arises from follow-through, we propose a Proportional plus Gravity and Coupling Torque Compensation (PGCTC) feedback controller. Preliminary simulation study shows the proposed controllers solve the hitting problem and the stopping problem respectively. The controllers are implemented on a physical robot. Experimental results indicate the robot is able to perform desired golf swing-backswing, downswing, and follow-through. We also give a preliminary analysis on the proposed method to understand its merits and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asada, H., Slotine, J.-J.E.: Robot Analysis and Control, p. 9. Wiley, New York (1986)

    Google Scholar 

  2. Vukobratovich, M., Kirchanskiy, N., Petrovich, T.: The design of high-speed robot regulators based on pipeline processors. Int. J. Comput. Syst. Sci. 31(6), 125–133 (1993)

    Google Scholar 

  3. Pierrot, F., Frasisse, P., Delebarre, X., Dauchez, P.: High-speed robotics-A completely parallel system. Rairo-Automatique-Productique Informatique Industrielle-Automatic Contr. Prod. Syst. 26(1), 3–14 (1992)

    Google Scholar 

  4. Andersson, R.L.: A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control. MIT Press, Cambridge (1988)

    Google Scholar 

  5. Ming, A., Kajitani, M.: Human skill and ultra high speed manipulator. In: Proceedings of the 3rd France-Japan Congress and 1st Europe-Asia congress on Mechatronics, pp. 436–441 (1996)

  6. Ming, A., Kajitani, M.: Human dynamic skill in high speed actions and its realization by robot. J. Robot. Mechatronics 12(3), 318–334 (2000)

    Google Scholar 

  7. Suzuki, S., Inooka, H.: Golf swing robot emulating a human motion. In: Proc. IEEE Int. Workshop, Robot and Human Communication, pp. 28–33. IEEE (1997)

  8. Suzuki, S., Inooka, H.: A new golf-swing robot model utilizing shaft elasticity. J. Sound Vib. 217(1), 17–31 (1998). doi:10.1006/jsvi.1998.1733

    Article  Google Scholar 

  9. Suzuki, S., Inooka, H.: A new golf-swing robot model emulating golfer’s skill. Sports Eng. 2, 13–22 (1999). doi:10.1046/j.1460-2687.1999.00013.x

    Article  Google Scholar 

  10. Suzuki, S., Haake, S.J., Heller, B.W.: Multiple modulation torque planning for a new golf-swing robot with a skilful wrist turn. Sports Eng. 9, 201–228 (2006)

    Google Scholar 

  11. Hoshino, Y., Kobayashi, Y., Yamada, G.: Vibration control using a state observer that considers disturbances of a golf swing robot. JSME Int. J. Ser. C. 48(1), 60–69 (2005). doi:10.1299/jsmec.48.60

    Article  Google Scholar 

  12. Chen, C.C., Inoue, Y., Shibata, K.: Numerical study on the wrist action during the golf downswing. Sports Eng. 10, 23–31 (2007)

    Article  Google Scholar 

  13. Chen, C.C., Inoue, Y., Shibata, K.: Impedance control for a golf swing robot to emulate different-arm-mass golfers. ASME J. Dyn. Syst. Meas. Control 130(2), 021007–021008 (2008)

    Article  Google Scholar 

  14. Yamakita, M., Ueno, M., Sadahiro, T.: Trajectory tracking control by an adaptive iterative learning control with artificial neural networks. In: Proc.American Control Conf., pp. 1253–1255. AACC (American Automatic Control Council) (2001)

  15. Zheng, X., Inamura, W., Shibata, K., Ito, K.: Robotic batting system-an architecture for learning and dynamic pattern generation. Adv. Robot. 14(5), 435–437 (2000). doi:10.1163/156855300741843

    Article  Google Scholar 

  16. Senoo, T., Namiki, A., Ishikawa, M.: High-speed batting using a multi-joint manipulator. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1191–1196. IEEE (2004)

  17. Ming, A., Mita, T., Dhlamini, S., Kajitani, M.: Motion control skill in human hyper dynamic manipulation – An investigation on the golf swing by simulation-. In: Proc. IEEE int. Symposium on Computational Intelligence in Robotics and Automation, p. 4752. IEEE (2001)

  18. De Luca, A., Oriolo, G.: Trajectory planning and control for planar robots with passive last joint. Int. J. Robot. Res. 21(5-6), 575–590 (2002). doi:10.1177/027836402321261940

    Article  Google Scholar 

  19. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985). doi:10.1177/027836498500400301

    Article  Google Scholar 

  20. Shin, K.G., McKay, N.D.: Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. Automat. Contr. 30, 531–541 (1985). doi:10.1109/TAC.1985.1104009

    Article  MATH  Google Scholar 

  21. Pfeiffer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE Trans. Robot. Autom. 3, 115–123 (1987)

    Article  Google Scholar 

  22. Slotine, J.-J.E., Yang, H.S.: Improving the efficiency of time-optimal path-following algorithms. IEEE Trans. Robot. Autom. 5, 118–124 (1989). doi:10.1109/70.88024

    Article  Google Scholar 

  23. Shiller, Z., Lu, H.-H.: Computation of path constrained time optimal motions with dynamic singularities. ASME J. Dyn. Syst. Meas. Control 114, 34–40 (1992)

    Article  MATH  Google Scholar 

  24. Nakanishi, J., Fukuda, T., Koditschek, D.E.: A brachiating robot controller. IEEE Trans. Robot. Autom. 16(2), 109–123 (2000). doi:10.1109/70.843166

    Article  Google Scholar 

  25. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)

    MATH  Google Scholar 

  26. Ishikawa, M., Neki, A., Imura, J., Hara, S.: Energy preserving control of a hopping robot based on hybrid port-controlled hamiltonian modeling. In: Proc. of SICE 2003 Annual Conference, vol. 3, pp. 2611–2616. SICE (The Society of Instrument and Control Engineers of Japan) (2003)

  27. Astrom, K.J., Furuta, K.: Swing up a pendulum by energy control. Automatica 36(2), 287–295 (2000). doi:10.1016/S0005-1098(99)00140-5

    Article  MathSciNet  Google Scholar 

  28. Hardt, M., Kreutz-Delgado, K., Helton, J.W.: Minimal energy control of a biped robot with numerical methods and a recursive symbolic dynamical model. In: Proc. of IEEE Int. Conf. Decision and Control, pp. 413–416. IEEE (1998)

  29. van der Schaft, A.: L2-Gain and Passivity Techniques in Nonlinear Control, p. 105. Springer, London (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunquan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Ming, A., Nagaoka, T. et al. Motion Control of a Golf Swing Robot. J Intell Robot Syst 56, 277–299 (2009). https://doi.org/10.1007/s10846-009-9312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9312-3

Keywords

Navigation