Skip to main content
Log in

Matrix-Based Discrete Event Control for Surveillance Mobile Robotics

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the control system for an autonomous robot for the surveillance of indoor environments. Our approach proposes a matrix-based formalism which allows us to merge in a single framework discrete-event supervisory control, conflict resolution and reactive control. As a consequence, the robot is able to autonomously handle high level tasks as well as low-level behaviors, solving control and decision-making issues simultaneously. Moreover, the matrix-based controller is modular and can be easily reconfigured if mission characteristics or robot hardware configuration change. An illustrative example and a report on experimental investigations are provided to illustrate the main features of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(3), 334–352 (2004)

    Article  Google Scholar 

  2. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE Proc. Vis. Image Signal Process. 152(2), 192–204 (2005)

    Article  Google Scholar 

  3. Everett, H.R.: Robotic security systems. IEEE Instrum. Meas. Mag. 6(4), 30–34 (2003)

    Article  Google Scholar 

  4. DehuaI, Z., Gang, X., Jinming, Z., Li, L.: Development of a mobile platform for security robot. In: Proceedings of IEEE International Conference on Automation and Logistics, pp. 1262–1267 (2007)

  5. Burgard, W., Moors, M., Fox, D., Reid, S., Thrun, S.: Collaborative multi-robot exploration. In: Proceedings of IEEE International Conference on Artificial Intelligence, pp. 852–858 (2000)

  6. Kwok, K.S., Driessen, B.J., Phillips, C.A., Tovey, C.A.: Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms. J. Intell. Robot. Syst. 35(1), 111–122 (2002)

    Article  MATH  Google Scholar 

  7. Grace, J., Baillieul, J.: Stochastic strategies for autonomous robotic surveillance. In: Proceedings of IEEE Conference on Decision and Control, pp. 2200–2205 (2005)

  8. Roman-Ballesteros, I., Pfeiffer, C.F.A.: Framework for cooperative multi-robot surveillance tasks. In: Proceedings of Electronics, Robotics and Automotive Mechanics Conference, vol. 2, pp. 163–170 (2006)

  9. Vig, L., Adams, J.A.: Coalition formation: from software agents to robots. J. Intell. Robot. Syst. 50(1), 85–118 (2007)

    Article  Google Scholar 

  10. Mireles, J., Lewis, F.: Deadlock analysis and routing on free-choice multipart reentrant flow lines using a matrix-based discrete event controller. In: Proceedings of the IEEE International Conference on Decision and Control, vol. 1, pp. 793–798 (2002)

  11. Mireles, J., Lewis, F.: Intelligent material handling: development and implementation of a matrix-based discrete event controller. IEEE Trans. Ind. Electron. 48(6), 1087–1097 (2001)

    Article  Google Scholar 

  12. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for robotic autonomy. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana (2001)

  13. Mes, M., van der Heijden, M., van Hillegersberg, J.: Design choices for agent-based control of AGVs in the dough making process. Decis. Support Syst. 44(4), 983–999 (2008)

    Google Scholar 

  14. Tacconi, D., Lewis, F.: A new matrix model for discrete event systems: application to simulation. IEEE Control Syst. Mag. 17(5), 62–71 (1997)

    Article  Google Scholar 

  15. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J.J.: Manufacturing Systems Control Design: A Matrix based Approach. Springer (2006)

  16. Giordano, V., Zhang, J.B., Naso, D., Lewis, F.: Integrated supervisory and operational control of a warehouse with a matrix-based approach. IEEE Trans. Autom. Sci. Eng. 5(1), 53–70 (2008)

    Article  Google Scholar 

  17. Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Supervisory control of hybrid systems. Proc. IEEE 88(7), 1026–1049 (2000)

    Article  Google Scholar 

  18. Fierro, R., Lewis, F.L.: A framework for hybrid control design. IEEE Trans. Syst. Man Cybern. Part A 27(6), 765–773 (1997)

    Article  Google Scholar 

  19. Huq, R., Mann, G.K.I., Gosine, R.G. : Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Trans. Robot. 22(5), 903–916 (2006)

    Article  Google Scholar 

  20. Ji, M., Sarkar, N.: Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation. IEEE Trans. Robot. 23(1), 174–178 (2007)

    Article  Google Scholar 

  21. Brink, K., Olsson, M., Bolmsj, G.: Increased autonomy in industrial robotic systems: a framework. J. Intell. Robot. Syst. 19(4), 357–373 (1997)

    Article  Google Scholar 

  22. Chen, Y.L., Ling F.: Modeling of discrete event systems using finite state machines with parameters. In: Proceedings of IEEE International Conference on Control Applications, Anchorage, Alaska (2000)

  23. Ma, L., Hasegawa, K., Sugisawa, M., Takahashi, K., Miyagi, P.E., Santos Filho, D.J.: On resource arc for petri net modelling of complex resource sharing system. J. Intell. Robot. Syst. 26(3), 423–437 (1999)

    Article  Google Scholar 

  24. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of petri net methods for controlled discrete event systems. Discret. Event Dyn. Syst. Theory Appl. 7(2), 151–190 (1997)

    Article  MATH  Google Scholar 

  25. Georgilakis, P.S., Katsigiannis, J.A., Valavanis, K.P., Souflaris, A.T.: A systematic stochastic petri net based methodology for transformer fault diagnosis and repair actions. J. Intell. Robot. Syst. 45(2), 181–201 (2006)

    Article  Google Scholar 

  26. Li, Y., Wonham, W.M.: Control of vector discrete-event systems I - the base model. IEEE Trans. Automat. Contr. 38(8), 1214–1227 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, Y., Wonham, W.M.: Control of vector discrete-event systems II - controller synthesis. IEEE Trans. Automat. Contr. 39(3), 512–513 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Giordano, V., Ballal, P., Lewis, F., Turchiano, B., Zhang, J.B.: Supervisory control of mobile sensor networks: math formulation, simulation, and implementation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(4), 806–819 (2006)

    Article  Google Scholar 

  29. Schiraldi, V., Giordano, V., Naso, D., Turchiano, B., Lewis, F.: Matrix-based scheduling and control of a mobile sensor network. In: 17th IFAC World Congress, pp. 10415–10420 (2008)

  30. Nicolescu, M.N., Mataric, M.J.: A hierarchical architecture for behavior-based robots. In: Proceedings of First International Joint Conference on Autonomous Agents and Multi-Agent Systems, Italy (2002)

  31. Gat, E.: Three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. AAAI, Menlo Park (1998)

    Google Scholar 

  32. Connell, J.: SSS: a hybrid architecture applied to robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation (1992)

  33. Arkin, R.C., Balch, T.R.: Aura: principles and practice in review. J. Exp. Theor. Artif. Intell. 9, 175–189 (1997)

    Article  Google Scholar 

  34. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  35. Payton, D.W., Keirsey, D., Kimble, D.M., Krozel, J., Rosenblatt, J.K.: Do whatever works: a robust approach to fault-tolerant autonomous control. Appl. Intell. 2(3), 225–250 (1992)

    Article  Google Scholar 

  36. Cupertino, F., Giordano, V., Naso, D., Delfine, L.: Fuzzy control of a mobile robot using a matlab-based rapid prototyping system. IEEE Robot. Autom. Mag. 13(4), 74–81 (2006)

    Article  Google Scholar 

  37. Côté, C., Brosseau, Y., Létourneau, D., Raïevsky C., Michaud, F.: Robotic software integration using MARIE. Int. J. Adv. Robot. Syst. 3(1), 55–60 (2006)

    Google Scholar 

  38. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming: the carnegie mellon navigation (CARMEN) toolkit. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp.2436–2441 (2003)

  39. Di Paola, D., Milella, A., Cicirelli, G., Distante, A.: Robust vision-based monitoring of indoor environments by an autonomous mobile robot. In: Proceedings of ASME International Mechanical Engineering Congress & Exposition (2007)

  40. Marotta, C., Milella, A., Cicirelli, G., Distante, A.: Using a 2D laser rangefinder for environment monitoring by an autonomous mobile robot. In: Proceedings of ASME International Mechanical Engineering Congress & Exposition (2007)

  41. Milella, A., Vanadia, P., Cicirelli, G., Distante, A.: RFID-based environment mapping for autonomous mobile robot applications. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007)

  42. Milella, A., Dimiccoli, C., Cicirelli, G., Distante, A.: Laser-based people-following for human-augmented mapping of indoor environments. In: Proceedings of the 25th IASTED International Multi-Conference, pp. 151–155. (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Di Paola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Paola, D., Naso, D., Turchiano, B. et al. Matrix-Based Discrete Event Control for Surveillance Mobile Robotics. J Intell Robot Syst 56, 513 (2009). https://doi.org/10.1007/s10846-009-9326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-009-9326-x

Keywords

Navigation