Skip to main content
Log in

Sensor Fusion for SLAM Based on Information Theory

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We present a sensor fusion management technique based on information theory in order to reduce the uncertainty of map features and the robot position in SLAM. The method is general, has no extra postulated conditions, and its implementation is straightforward. We calculate an entropy weight matrix which combines the measurements and covariance of each sensor device to enhance reliability and robustness. We also suggest an information theoretic algorithm via computing the error entropy to confirm the relevant features for associative feature determination. We validate the proposed sensor fusion strategy in EKF-SLAM and compare its performance with an implementation without sensor fusion. The simulated and real experimental studies demonstrate that this sensor fusion management can reduce the uncertainty of map features as well as the robot pose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lizarralde, F., Nunes, E.V.L., Liu H., Wen, J.T.: Mobile robot navigation using sensor fusion. In: Robotics and Automation, 2003. Proceedings. ICRA ‘03. IEEE International Conference, vol. 1, pp. 458–463 (2003)

  2. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18, 781–795 (2002)

    Article  Google Scholar 

  3. Ahn, S., Choi, J., Doh, N., Chung, W.: A practical approach for EKF-SLAM in an indoor environment: fusing ultrasonic sensors and stereo camera. Auton. Robots 24, 315–335 (2008)

    Article  Google Scholar 

  4. Tsai, C.-C., Lin, H.-H., Lai, S.-W.: Multisensor 3D posture determination of a mobile robot using inertial and ultrasonic sensors. J. Intell. Robot. Syst. 42, 317–335 (2005)

    Article  Google Scholar 

  5. Moreira, M.A.G., Machado, H.N., Mendonca, C.F.C., Pereira, G.A.S.: Mobile robot outdoor localization using planar beacons and visual improved odometry. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference, pp. 2468–2473 (2007)

  6. Vadakkepat, P., Jing, L.: Improved particle filter in sensor fusion for tracking randomly moving object. IEEE Trans. Instrum. Meas. 55, 1823–1832 (2006)

    Article  Google Scholar 

  7. Drocourt, C., Delahoche, L., Marhic, B., Clerentin, A.: Simultaneous localization and map construction method using omnidirectional stereoscopic information. In: Robotics and Automation, 2002. Proceedings. ICRA ‘02. IEEE International Conference, vol. 1, pp. 894–899 (2002)

  8. Cohen, O., Edan, Y.: A sensor fusion framework for on-line sensor and algorithm selection. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference, pp. 3155–3161 (2005)

  9. Matía, F., Jiménez, A.: Multisensor fusion: an autonomous mobile robot. J. Intell. Robot. Syst. 22, 129–141 (1998)

    Article  MATH  Google Scholar 

  10. Nandi, G.C., Mitra, D.: Development of a sensor fusion strategy for robotic application based on geometric optimization. J. Intell. Robot. Syst. 35, 171–191 (2002)

    Article  MATH  Google Scholar 

  11. Manyika, J., Durrant-Whyte, H.: Data Fusion and Sensor Management: A Decentralized Information-theoretic Approach. Ellis Horwood, New York (1994)

    Google Scholar 

  12. Upcroft, B., Ong, L.L., Suresh, K., Ridley, M., Bailey, T., Sukkarieh, S., Durrant-Whyte, H.: Rich probabilistic representations for bearing only decentralised data fusion. In: Information Fusion, 2005 8th International Conference, p. 8 (2005)

  13. Fassinut-Mombot, B., Choquel, J.-B.: A new probabilistic and entropy fusion approach for management of information sources. Inf. Fusion 5, 35–47 (2004)

    Article  Google Scholar 

  14. Burgard, W., Fox, D., Thrun, S.: Active mobile robot localization by entropy minimization. In: Advanced Mobile Robots, 1997. Proceedings, Second EUROMICRO Workshop, pp. 155–162 (1997)

  15. Porta, J.M., Terwijn, B., Krose, B.: Efficient entropy-based action selection for appearance-based robot localization. In: Robotics and Automation, 2003. Proceedings. ICRA ‘03. IEEE International Conference, vol. 2, pp. 2842–2847 (2003)

  16. Zhang, S., Xie, L., Adams, M.D.: Entropy based feature selection scheme for real time simultaneous localization and map building. In: Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference, pp. 1175–1180 (2005)

  17. Stachniss, C., Grisetti, G., Burgard, W.: Information Gain-based exploration using rao-blackwellized particle filters. In: Proc. of Robotics: Science and Systems (RSS). Massachusetts Institute of Technology, Cambridge, Massachusetts, USA (2005)

  18. Saez, J.M., Escolano, F.: Entropy minimization SLAM using stereo vision. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference, pp. 36–43 (2005)

  19. Fox, D., Burgard, W., Thrun, S., Cremers, A.B.: Position estimation for mobile robots in dynamic environments. In: Proceedings of The Fifteenth National/tenth Conference on Artificial Intelligence/Innovative Applications of ArtifIcial Intelligence. Madison, Wisconsin, United States: American Association for Artificial Intelligence (1998)

    Google Scholar 

  20. Li, L., Ji, H., Gao, X.: Maximum entropy fuzzy clustering with application to real-time target tracking. Signal Process. 86, 3432–3447 (2006)

    Article  MATH  Google Scholar 

  21. Zhang, X., Rad, A., Wong, Y.-K.: A robust regression model for simultaneous localization and mapping in autonomous mobile robot. J. Intell. Robot. Syst. 53, 183–202 (2008)

    Article  Google Scholar 

  22. Ip, Y.L., Rad, A.B.: Incorporation of feature tracking into simultaneous localization and map building via sonar data. J. Intell. Robot. Syst. 39, 149–172 (2004)

    Article  Google Scholar 

  23. Van Aelst, S., Wang, X., Zamar, R.H., Zhu, R.: Linear grouping using orthogonal regression. Comput. Stat. Data Anal. 50, 1287–1312 (2006)

    Article  Google Scholar 

  24. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc., Ser. B Stat. Methodol. 63, 411–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  26. Smith P., Reid I., Davison A.J.: Real-time monocular SLAM with straight lines. In: Proc. 17th British Machine Vision Conference (BMVC), pp. 17–26 (2006)

  27. Eade, E., Drummond, T.: Edge landmarks in monocular SLAM. In: Proc. 17th British Machine Vision Conference (BMVC), pp. 7–16 (2006)

  28. Gee, A.P., Mayol-Cuevas, W.: Real-time model-based SLAM using line segments. In: 2nd International Symposium on Visual Computing. Lake Tahoe, NV, USA, pp. 354–363 (2006)

  29. Lemaire, T., Lacroix, S.: Monocular-vision based SLAM using line segments. In: Robotics and Automation, 2007 IEEE International Conference, pp. 2791–2796 (2007)

  30. Erdogmus, D.: Information Theoretic Learning: Renyi’s Entropy and its Applications to Adaptive System Training, vol. Ph.D. United States–Florida: University of Florida (2002)

  31. Ding, S.-F., Shi, Z.-Z.: Studies on incidence pattern recognition based on information entropy. J. Inf. Sci. 31, 497–502 (2005)

    Article  Google Scholar 

  32. Zhou, W., Zhao, R.: A combination evaluation method based on FAHP and entropy weigh method. In: Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference, pp. 5907–5910 (2007)

  33. Duda, R.O.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  34. Erdogmus, D., Principe, J.C.: An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 50, 1780–1786 (2002)

    Article  Google Scholar 

  35. Botev, Z., Kroese, D.: Non-asymptotic bandwidth selection for density estimation of discrete data. Meth. Comput. Appl. Probab. 10, 435–451 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Cover, T.M.: Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  37. Qiu, W.: An eigenvalue method on group decision. Appl. Math. Mech. 18(11), 1099–1104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Julier, S., Uhlmann, J.K.: General decentralized data fusion with covariance intersection (CI). In: Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion. CRC, Boca Raton, pp. 12-1–12-24 (2001)

  39. Ip, Y.L., Rad, A.B., Chow, K.M., Wong, Y.K.: Segment-based map building using enhanced adaptive fuzzy clustering algorithm for mobile robot applications. J. Intell. Robot. Syst. 35, 221–245 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad B. Rad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Rad, A.B., Wong, YK. et al. Sensor Fusion for SLAM Based on Information Theory. J Intell Robot Syst 59, 241–267 (2010). https://doi.org/10.1007/s10846-010-9399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9399-6

Keywords

Navigation