Skip to main content

Advertisement

Log in

A Hybrid Control Approach for Non-invasive Medical Robotic Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a hybrid supervisory control approach adopted for a non-invasive medical robot called Focused Ultrasound Surgical Robot—Breast Surgery (FUSBOT-BS) is elaborated. The system was built for the use in the breast surgery with high intensity focused ultrasound (HIFU) as the means of the treatment. A number of different control strategies such as PID and model-based control were incorporated into a family of controllers to create the hybrid control. Depending on the objective, the supervisory control determines the type of controller used for the specified task so as to maximize the advantages of each of the controllers. Before it was implemented into the actual robotic system the then proposed control approach was modeled and simulated using Matlab®. This control approach was developed based on a review of popular control approaches used in medical robotic systems, in order to look at the feasibility of having a uniform control strategy for a spectrum of medical robotic system. With unified control strategy it is possible to have a safety standard regulation for the medical robotic systems which is currently difficult to be done because of various control strategies adopted by each of the medical robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camarillo, D.B., Krummel, T.M., Salisbury, J.K. Jr.: Robotic technology in surgery: past, present, and future. Am. J. Surg. 188, 2–15 (2009). doi:10.1016/j.amjsurg.2004.08.025

    Article  Google Scholar 

  2. Taylor, R.H., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Autom. 19(5), 765–781 (2003). doi:10.1109/TRA.2003.817058

    Article  Google Scholar 

  3. Cleary, K., Nguyen, C.: State of the art in surgical robotics: clinical applications and technology challenges. Comput. Aided Surg. 6(6), 312–340 (2001)

    Article  Google Scholar 

  4. Swandito, G.G.N.: Kumar, Chauhan, S.: Control hierarchy of medical robotic systems for non-invasive for surgery. In: Proceedings of the 12th International Conference on Biomedical Engineering, Singapore (2005)

  5. Mishra, R.K., Chauhan, S.: Safety of surgical robots: a fundamental aspect. In: Proceedings of the 12th ISMCR—Towards Advanced Robot Systems and Virtual Reality, Bourges, France (2002)

  6. Kazanzides, P., Zuhars, J., Mittelstadt, B., Taylor, R.H.: Force sensing and control for a surgical robot. In: Proceedings of the IEEE International Conference on Robotics and Auto, Nice, France, pp. 612–617 (1992)

  7. Kennedy, C.W., Desai, J.P.: Model-based control of the Mitsubishi PA-10 robot arm: application to robot-assisted surgery. In: Proceedings of the IEEE International Conference on Robotics and Auto, New Orleans, LA, pp. 2523–2528 (2004)

  8. Zemiti, N., Ortmaier, T., Morel, G.: A new robot for force control in minimally invasive surgery. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 3643–3648 (2004)

  9. Gu, J.J., Meng, M., Cook, A., Faulkner, M.G., Liu, P.X.: Sensing and control of robotic prosthetic eye for ocular implant. In: Proceedings of the 26th IEEE International Conference on Intelligent Robots and Systems, Hawaii, USA, pp. 2166–2171 (2001)

  10. Ginhoux, R., Ganglouf, J., Mathelin, M., Soler, L., Sanchez, M.M.A., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot. 21(1), 67–79 (2005). doi:10.1109/TRO.2004.833812

    Article  Google Scholar 

  11. Zhu, W.H., Salcudean, S.E., Bachmann, S., Abolmaesumi, P.: Motion/force/image control of a diagnostic ultrasound robot. In: Proceedings IEEE International Conference on Robotics and Auto, San Francisco, CA, pp. 1580–1585 (2000)

  12. Ang, K.H., Chong, G., Yun, L.: PID control systems analysis, design, technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005). doi:10.1109/TCST.2005.847331

    Article  Google Scholar 

  13. Mishra, R.K.: FUSBOT-BS: Technical Manual. Robotics Research Centre, Nanyang Technological University, Singapore (2004)

    Google Scholar 

  14. Chauhan, S.: A HIFU medical robotic system for organotripsy and tissue ablation – the FUSBOT. In: Proceedings International Conference on Computing, Communication, and Control Technologies, Austin (Texas), USA (2004)

  15. Whitcomb, L.L., Arimoto, S., Naniwa, T., Ozaki, F.: Adaptive model-based hybrid control of geometrically constrained robot arms. IEEE Trans. Robot Autom. 13, 105–116 (1997)

    Article  Google Scholar 

  16. Mills, J.K.: Hybrid control: A constrained motion perspective. J. Robot. Syst. 8(2), 135–158 (1991). doi:10.1002/rob.4620080202

    Article  MATH  Google Scholar 

  17. Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Supervisory control of hybrid systems. Proc. IEEE 88(7), 1026–1049 (2000). doi:10.1109/5.871307

    Article  Google Scholar 

  18. Morse, A.S.: Control Using Logic-Based Switching Trends in Control: A European Perspective, pp. 69–113. Springer, London (1995)

    Google Scholar 

  19. Enste, U., Epple, U.: Hybrid structure in process control. In: Proceedings of the American Control Conference, San Diego, California, pp. 4482–4485 (1999)

  20. Astrom, K.J., Hagglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers—a survey. Control Eng. Pract. 1(4), 699–714 (1993). doi:10.1016/0967–0661(93)91394-C

    Article  Google Scholar 

  21. Shigemasa, T., Yukitomo, M., Kuwata, R. A model driven PID Control system and its case studies. In: Proceedings of the IEEE International Conference on Control Application, Glasgow, UK, pp. 571–576 (2002)

  22. Garcia, C.E., Carelli, R., Postigo, J.F., Soria, C.: Supervisory control for a telerobotic system: a hybrid control approach. Control Eng. Pract. 11, 805–817 (2003). doi:10.1016/S0967-0661(02)00206-X

    Article  Google Scholar 

  23. Cao, C.W.: Supervisory control of a class of hybrid dynamic systems. IEEE 22, 967–970 (1993)

    Google Scholar 

  24. Khalil, W., Kleinfinger, J.F.: A new geometric notation for open and closed-loop robots. In: Proceedings IEEE Conference on Robotics and Automation, San Francisco, CA, pp. 1174–1179 (1986)

  25. Schilling, R.J.: Fundamentals of Robotics: Analysis and Control. Prentice-Hall, Singapore (1990)

    Google Scholar 

  26. Kozlowski, K.: Modelling and Identification in Robotics: Advances in Industrial Control. Springer, Great Britain (1998)

    Google Scholar 

  27. Schiavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators. Prentice-Hall, Singapore (2000)

    Google Scholar 

  28. Olsson, H., Astrom, K.J., De Wit, C.C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4(3), 176–195 (1998)

    MATH  Google Scholar 

  29. Dupont, P., Armstrong, B., De Wit, C.C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Int. J. Autom. 30(7), 1083–1138 (1994). doi:10.1016/0005-1098(94)90209-7

    MATH  Google Scholar 

  30. De Wit, C.C., Lischinsky, P.: Adaptive friction compensation with partially known dynamic friction model. Int. J. Adapt Control Signal Process. 11, 65–80 (1997). doi:10.1002/(SICI)1099-1115(199702)11:1<65::AID-ACS395>3.0.CO;2-3

    Article  MATH  Google Scholar 

  31. The MathWorks Inc: US. MATLAB. http://www.mathworks.com (2007)

  32. Gu, D.W., Petkov, P.H.R., Konstantinov, M.M.: Robust Control Design With MATLAB. Springer, London (2006)

    Google Scholar 

  33. Intellicam System: IntelliPIX. http://www.cctvdealers.com/ (2007)

  34. Qu, Z.H.: Robust Control of Nonlinear Uncertain System. Wiley Series in Nonlinear Science. Wiley-Interscience, USA (1998)

    Google Scholar 

  35. Cadic, M.: Strongly robust adaptive control: the strong robustness approach. Dissertation in partial fulfillment of the requirements of the Dutch Institute of Systems and Control (DISC) for graduate study, Twente University Press, The Netherlands (2003)

  36. Shinners, S.M.: Advance Modern Control System Theory and Design. Wiley-Interscience, USA (1998)

    Google Scholar 

  37. Galil Motion Controller, U.S.A.: Manuals and command references. http://www.galilmc.com/ (2005)

  38. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilisation in medicine. Artif. Intell. Med. 21, 27–42 (2001). doi:10.1016/S0933-3657(00)00072-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swandito Susanto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susanto, S., Chauhan, S. A Hybrid Control Approach for Non-invasive Medical Robotic Systems. J Intell Robot Syst 60, 83–110 (2010). https://doi.org/10.1007/s10846-010-9407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9407-x

Keywords

Navigation