Skip to main content
Log in

Practical Formation Control of Multiple Unicycle-Type Mobile Robots with Limited Sensing Ranges

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a design of cooperative controllers that force a group of N unicycle-type mobile robots with limited sensing ranges to perform a desired tight formation and that guarantee no collisions between any robots in the group. The desired formation can be stabilized at any reference trajectories with bounded time derivatives. The formation control design is based on several nonlinear coordinate changes, the transverse function approach, the backstepping technique, the Lyapunov direct method, and smooth or p −times differentiable step functions. These functions are introduced and incorporated into novel potential functions to solve the collision avoidance problem without the need of switchings despite of the robots’ limited sensing ranges. The proposed formation control system is applied to solve a gradient climbing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991)

    Article  MATH  Google Scholar 

  2. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  3. Gu, D., Wang, Z.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Technol. 17(5), 1211–1219 (2009)

    Article  Google Scholar 

  4. Hu, J., Feng, G.: Distributed tracking control of leader follower multi-agent systems under noisy measurement. Automatica 46(8), 1382–1387 (2010)

    Article  MATH  Google Scholar 

  5. Egerstedt, M., Hu, X.: Formation constrained multiagent control. IEEE Trans. Robot. Autom. 17(6), 947–951 (2001)

    Article  Google Scholar 

  6. Balch, T., Arkin, R.C.: Behavior based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  7. Jonathan, R.T., Beard, R.W., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  8. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Automat. Control 49(8), 1292–1302 (2004)

    Article  MathSciNet  Google Scholar 

  9. Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (Barcelona, Spain), pp. 4132–4137 (2005)

  10. Do, K.D.: Bounded controllers for formation stabilization of mobile agents with limited sensing ranges. IEEE Trans. Automat. Control 52(3), 569–576 (2007)

    Article  MathSciNet  Google Scholar 

  11. Barnes, L.E., Fields, M.A., Valavanis, K.P.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. Syst. Man Cybern. B Cybern. 39, 1434–1445 (2009)

    Article  Google Scholar 

  12. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  15. Belta, C., Kumar, V.: Abstraction and control for groups of robots. IEEE Trans. Robot. 20(5), 865–875 (2004)

    Article  Google Scholar 

  16. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Automat. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gazi, V., Passino, K.M.: A class of attraction/repulsion functions for stable swarm aggregations. Int. J. Control 77(18), 1567–1579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cortes, J., Martinez, S., Bullo, F.: Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM. Control, Optimisation and Calculus of Variations 11, 691–719 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. and Automat. 8(5), 501–518 (1992)

    Article  Google Scholar 

  20. Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hussein, I., Stipanovic, D.: Effective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 642–657 (2007)

    Article  Google Scholar 

  22. Hussein, I., Bloch, A.: Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans. Automat. Control 53(3), 668–681 (2008)

    Article  MathSciNet  Google Scholar 

  23. Cucker, F., Dong, J.G.: Avoiding collisions in flocks. IEEE Trans. Automat. Control 55(5), 1238–1243 (2010)

    Article  MathSciNet  Google Scholar 

  24. Abdessameuda, A., Tayebi, A.: On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst. Control Lett. 59(5), 812–821 (2010)

    Article  Google Scholar 

  25. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jonathan, R., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  27. Liberzon, D.: Switching in Systems and Control. Birkhauser, Cambridge (2003)

    Book  MATH  Google Scholar 

  28. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  29. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th IEEE Conference on Decision and Control (New Orleans, LA, USA), vol. 4, pp. 3805–3810 (1995)

  30. Do, K.D., Pan, J.: Global output-feedback path tracking of unicycle-type mobile robots. Robot. Comput.-Integr. Manuf. 22, 166–179 (2006)

    Article  Google Scholar 

  31. Samson, C.: Velocity and torque feedback control of a nonholonomic cart. In: Canudas de Wit, C. (ed.) Advanced Robot Control. Lecture Notes in Control and Information Sciences (Berlin, Heidelberg), pp. 125–151 (1991)

    Chapter  Google Scholar 

  32. Do, K.D., Pan, J.: Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, New York (2009)

    Google Scholar 

  33. Do, K.D., Pan, J.: Nonlinear formation control of unicycle-type mobile robots. Robot. Auton. Syst. 55, 191–204 (2007)

    Article  Google Scholar 

  34. Do, K.D.: Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges. Robot. Auton. Syst. 57, 34–47 (2009)

    Article  MathSciNet  Google Scholar 

  35. Do, K.D.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Syst. Technol. 16(3), 527–538 (2008)

    Article  Google Scholar 

  36. Morin, P., Samson, C.: A characterization of the lie algebra rank condition by transverse periodic functions. SIAM J. Control Optim. 40(4), 1227–1249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Morin, P., Samson, C.: Practical stabilization of driftless systems on lie groups: the transverse function approach. IEEE Trans. Automat. Control 48(9), 1496–1508 (2003)

    Article  MathSciNet  Google Scholar 

  38. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  39. Waldron, K.J., Kinzel, G.L.: Kinematics Dynamics and Design of Machinery. Wiley, New York (2004)

    Google Scholar 

  40. Khalil, H.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  41. Tanner, H.G., Kyriakopoulos, K.J.: Backstepping for nonsmooth systems. Automatica 39(7), 1259–1265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Widder, D.V.: Advanced Calculus, 2nd edn. Dover, New York (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac Duc Do.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, K.D., Lau, M.W. Practical Formation Control of Multiple Unicycle-Type Mobile Robots with Limited Sensing Ranges. J Intell Robot Syst 64, 245–275 (2011). https://doi.org/10.1007/s10846-010-9531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9531-7

Keywords

Navigation