Skip to main content
Log in

A Connectivity-Based Method for Enhancing Sampling in Probabilistic Roadmap Planners

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The motion planning is a difficult problem but nevertheless, a crucial part of robotics. The probabilistic roadmap planners have shown to be an efficient way to solve these planning problems. In this paper, we present a new algorithm that is based on the principles of the probabilistic roadmap planners. Our algorithm enhances the sampling by intelligently detecting which areas of the configuration space are easy and which parts are not. The algorithm then biases the sampling only to the difficult areas that may contain narrow passages. Our algorithm works by dividing the configuration space into regions at the beginning and then sampling configurations inside each region. Based on the connectivity of the roadmap inside each region, our algorithm aims to detect whether the region is easy or difficult. We tested our algorithm with three different simulated environments and compared it with two other planners. Our experiments showed that with our method it is possible to achieve significantly better results than with other tested planners. Our algorithm was also able to reduce the size of roadmaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: an obstacle-based PRM for 3D workspaces. In: Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pp. 155–168 (1998)

  2. van den Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environments. IEEE Trans. Robot. 21(5), 885–897 (2005)

    Article  Google Scholar 

  3. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1018–1023 (1999)

  4. Branicky, M., Lavalle, S., Olson, K., Yang, L.: Quasi-randomized path planning. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1481–1487 (2001)

  5. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA (1988)

    Google Scholar 

  6. Cortés, J., Siméon, T., Ruiz De Angulo, V., Guieysse, D., Remaud-Siméon, M., Tran, V.: A path planning approach for computing large-amplitude motions of flexible molecules. Bioinf. 21(1), 116–125 (2005)

    Article  Google Scholar 

  7. Esteves, C., Arechavaleta, G., Pettré, J., Laumond, J.-P.: Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)

    Article  Google Scholar 

  8. Geraerts, R., Overmars, M.H.: Sampling and node adding in probabilistic roadmap planners. Robot. Auton. Syst. 54, 165–173 (2006)

    Article  Google Scholar 

  9. Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-time high-quality path planning. Comput. Anim. Virtual Worlds 18, 107–119 (2007)

    Article  Google Scholar 

  10. Geraerts, R., Overmars, M.H.: Reachability-based analysis for probabilistic roadmap planners. Robot. Auton. Syst. 55(11), 824–836 (2007)

    Article  Google Scholar 

  11. Holleman, C., Kavraki, L.E.: A framework for using the workspace medial axis in PRM planners. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1408–1413 (2000)

  12. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Rob. Autom. (2003)

  13. Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Rob. Res. 25(7), 627–643 (2006)

    Article  Google Scholar 

  14. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl. 9(4 & 5), 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hsu, D., Sánchez-Ante, G., Sun, Z.: Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 3885–3891 (2005)

  16. Jiménez, P., Thomas, F., Torras, C.: Collision detection algorithms for motion planning. In: Laumond, J.-P. (ed.) Robot Motion Planning and Control, pp. 1–53. Springer, Berlin (1998)

    Google Scholar 

  17. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  18. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 3719–3726 (2000)

  19. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston, MA (1991)

    Book  Google Scholar 

  20. Lien, J.-M., Thomas, S.L., Amato, N.M.: A general framework for sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Rob. Autom. (2003)

  21. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proc. IEEE Symp. Found. Comput. Sci., pp. 421–427 (1979)

  22. Rodríguez, S., Thomas, S., Pearce, R., Amato, N.M.: Resampl: a region-sensitive adaptive motion planner. In: Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pp. 285–300 (2006)

  23. Saha, M., Latombe, J.-C., Chang, Y.-C., Prinz, F.: Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Auton. Robots 19(3), 301–319 (2005)

    Article  Google Scholar 

  24. Tapia, L., Thomas, S., Amato, N.M.: A motion planning approach to studying molecular motions. Commun. Inf. Syst. 10(1), 53–68 (2010)

    MATH  Google Scholar 

  25. Tapia, L., Thomas, S., Boyd, B., Amato, N.M.: An unsupervised adaptive strategy for constructing probabilistic roadmaps. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 2300–2307 (2009)

  26. Thomas, S., Morales, M., Tang, X., Amato, N.M.: Biasing samplers to improve motion planning performance. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1625–1630 (2007)

  27. Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1024–1031 (1999)

  28. Zhang, L., Kim, Y.J., Manocha, D.: A hybrid approach for complete motion planning. In: Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS), pp. 7–14 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika T. Rantanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantanen, M.T. A Connectivity-Based Method for Enhancing Sampling in Probabilistic Roadmap Planners. J Intell Robot Syst 64, 161–178 (2011). https://doi.org/10.1007/s10846-010-9534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9534-4

Keywords

Navigation