Skip to main content
Log in

Complex Task Allocation in Mobile Surveillance Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In mobile surveillance systems, complex task allocation addresses how to optimally assign a set of surveillance tasks to a set of mobile sensing agents to maximize overall expected performance, taking into account the priorities of the tasks and the skill ratings of the mobile sensors. This paper presents a market-based approach to complex task allocation. Complex tasks are the tasks that can be decomposed into subtasks. Both centralized and hierarchical allocations are investigated as winner determination strategies for different levels of allocation and for static and dynamic search tree structures. The objective comparison results show that hierarchical dynamic tree task allocation outperforms all the other techniques especially in complex surveillance operations where large number of robots is used to scan large number of areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aylett, R., Barnes, D.: A multi-robot architecture for planetary rovers. In: Proc. 5th ESA Workshop on Advanced Space Technologies for Robot. Autom. Noordwick, The Netherland (1998)

    Google Scholar 

  2. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 1957–1962 (2003)

  3. Bernardine Dias, M., Stentz, A.: A market approach to multi-robot coordination. Tech. Rep., Carnegie Mellon University (2001)

  4. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1234–1239 (1999)

  5. Brumitt, B.L., Stentz, A.: GRAMMPS: a generalized mission planner for multiple mobile robots in unstructured environments. In: Proc. IEEE Int. Conf. on Robot. Autom., pp. 1564–1571. Leuven, Belgium (1998)

    Google Scholar 

  6. Caloud, P., Choi, W., Latombe, J.C., Pape, C.L., Yim, M.: Indoor automation with many mobile robots. In: Proc. IEEE Int. Workshop on Intelligent Robots and Syst. (IROS), pp. 67–72 (1990)

  7. Carley, K.M., Gasser, L.: Computational organization theory. In: Lawrence Earlbaum Associates. Hillsdale, NJ (1994)

    Google Scholar 

  8. Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., Sgorbissa, A.: Communication and coordination among heterogeneous mid-size players: ART99. Lect. Notes Comput. Sci. 2019, 86–95 (2001)

    Article  Google Scholar 

  9. Dias, M.B.: TraderBots: a new paradigm for robust and efficient multi-robot coordination in dynamic environments. PhD Thesis, Robotics Institute, Carnegie Mellon University (2004)

  10. Dias, M.B., Stentz, A.: A free market architecture for distributed control of a multi-robot system. In: Proc. 6th Int. Conf. on Intelligent Autonomous Syst. (IAS-6), pp. 115–122 (2000)

  11. Dias, M.B., Zinck, M., Zlot, R., Stentz, A.: Robust multi-robot coordination in dynamic environments. In: Proc. of IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3435–3442 (2004)

  12. Elmogy, A.M., Karray, F.O., Khamis, A.M.: Auction-based consensus mechanism for cooperative tracking in multisensor surveillance systems. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII), vol. 14, no. 1 (2010)

  13. Gale, D.: The Theory of Linear Economic Models. McGraw-Hill Book Company, Inc., New York (1960)

    Google Scholar 

  14. Gerkey, B.P., Mataric, M.J.: Sold!: auction methods for multi-robot control. IEEE Trans. Robot. Autom. (Special Issue on Multi-Robot Systems) 18(5), 758–768 (2002)

    Google Scholar 

  15. Gerkey, B.P., Mataric, M.J.: A framework for studying multi-robot task allocation. In: Schultz, A.C., and others (eds.) Multi-Robot Syst.: From Swarms to Intelligent Automata, vol. 2, pp. 15–26. Kluwer Academic Publishers, The Netherlands (2003)

    Google Scholar 

  16. Gerkey, G.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Rob. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  17. Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proc. 11th Int. Conf. on Advanced Robotics, pp. 317–323 (2003)

  18. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2004)

    Article  Google Scholar 

  19. Kalra, N., Ferguson, D., Stentz, A.: Hoplites: a market-based framework for complex tight coordination in multi-robot teams. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1170–1177 (2005)

  20. Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. IEEE Pervasive Computing 3(4), 24–33 (2004)

    Article  Google Scholar 

  21. Lerman, K., Jones, C., Galstyan, A., Mataric, J.: Analysis of dynamic task allocation in multi robot systems. Int. J. Rob. Res. 25(3), 225–241 (2006)

    Article  Google Scholar 

  22. Manisterski, E., David, E., Kraus, E., Jennings, N.: Forming efficient agent groups for completing complex tasks. In: Proc. 5th Int. Conf. on Autonomous Agents and Multi-Agent Syst., pp. 834–841. Hakodate, Japan (2006)

    Chapter  Google Scholar 

  23. Martinez-Jaramillo, S., Tsang, E.P.K.: An heterogeneous, endogenous and coevolutionary GP-based financial market. IEEE Trans. Evol. Comput. 13(1), 33–55 (2009)

    Article  Google Scholar 

  24. Miao, Y.Q., Khamis, A., Kamel, M.: Coordinated motion control of mobile sensors in surveillance systems. International Conference on Signals, Circuits and Systems (SCS’09). Djerba, Tunisia (2009)

    Google Scholar 

  25. Ortiz, C.J., Vincent, R., Morisset, B.: Task inference and distributed task management in the Centibots robotic system. In: Proc. 4th Int. Joint Conf. on Autonomous Agents and Multi-Agent Syst., pp. 860–867. Utrecht University, The Netherlands (2005)

    Chapter  Google Scholar 

  26. Parker, L.: Alliance: an architecture for fault-tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  27. Quinonez, Y., de Lope, J., Maravall, D.: Cooperative and competitive behaviors in a multi-robot system for surveillance tasks. EUROCAST 2009, LNCS 5717, pp. 437–444. Springer-Verlag, Berlin (2009)

    Google Scholar 

  28. Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinational auctions. Manage. Sci. 44(8), 1131–1147 (1998)

    Article  MATH  Google Scholar 

  29. Simmons, R., Apfelbaum, D., Fox, D., Goldman, R., Haigh, K., Musliner, D., Pelican, M., Thrun, S.: Coordinated deployment of multiple heterogeneous robots. In: Proc. Intelligent Robots and Syst. (IROS), pp. 2254–2260. Takamatsu, Japan (2000)

    Google Scholar 

  30. Tang, F., Parker, L.: A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In: Proc. IEEE Int. Conf. On Robot. Autom. Roma, Italy (2007)

    Google Scholar 

  31. Tang, F., Saha, S.: An anytime winner determination algorithm for time-extended multi-robot task allocation. In: Proc. Int. Conf. on Automation, Robotics, and Control Syst., pp. 123–130 (2008)

  32. Tsai, H.K., Yang, J.M., Tsai, Y.F., Kao, C.Y.: An evolutionary algorithm for large traveling salesman problems. IEEE Trans. Syst. Man, Cybern. Part B, Cybern. 34(4), 1718–1729 (2004)

    Article  Google Scholar 

  33. Tseng, Y., Wang, Y., Cheng, K., Hsieh, Y.: iMouse: an integrated mobile surveillance and wireless sensor system. IEEE Comp. Soc. 40(6), 60–66 (2007)

    Google Scholar 

  34. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE Proc. Vis. Image Signal Process. 152(2), 192–204 (2005)

    Article  Google Scholar 

  35. Vaughan, R.: Massively multi-robot simulation in stage. J. Swarm Intell. 2(2–4), 189–208 (2008)

    Article  Google Scholar 

  36. Wurll, C., Henrich, D., Worn, H.: Multi-goal path planning for industrial robots. In: International Conference on Robotics and Application (RA99). Santa Barbara, USA (1999)

    Google Scholar 

  37. Xie, X.F., Liu, J.: Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Trans. Syst. Man Cybern. Part B, Cybern. 39(2), 489–502 (2009)

    Article  Google Scholar 

  38. Zaki, B., Gammoudi, M.: Decentralized method for complex task allocation in massive MAS. In: Proc. Intelligent Syst. and Automation: 1st Mediterranean Conf. on Intelligent Systems and Automation (CISA 08), vol. 1019, pp. 287–293 (2008)

  39. Zheng, X., Koenig, S., Tovey, C.: Improving sequential single-item auctions. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2238–2244 (2006)

  40. Zlot, R., Stentz, A.: Market based multirobot coordination for complex tasks. Int. J. Rob. Res. 25(1), 73–101 (2006)

    Article  Google Scholar 

  41. Zou, Y., Chakrabarty, K.: Distributed mobility management for target tracking in networks. IEEE Trans. Mob. Comput. 6(8), 872–887 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Elmogy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamis, A.M., Elmogy, A.M. & Karray, F.O. Complex Task Allocation in Mobile Surveillance Systems. J Intell Robot Syst 64, 33–55 (2011). https://doi.org/10.1007/s10846-010-9536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9536-2

Keywords

Navigation