Skip to main content
Log in

A Generic Framework for Distributed Multirobot Cooperation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

DEMiR-CF is a generic framework designed for a multirobot team to efficiently allocate tasks among themselves and achieve an overall mission. In the design of DEMiR-CF, the following issues were particularly investigated as the design criteria: efficient and realistic representation of missions, efficient allocation of tasks to cooperatively achieve a global goal, maintenance of the system coherence and consistency by the team members, detection of the contingencies and recover from various failures that may arise during runtime, efficient reallocation of tasks (if necessary) and reorganization of team members (if necessary). DEMiR-CF is designed to address different types of missions from the simplest to more complex ones, including missions with interrelated tasks and multi-resource (robot) requirements. Efficiency of the framework is validated through experiments in three different types of domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alami, R., Botelho, S.C.: Plan-based multi-robot cooperation. In: Advances in Plan-Based Control of Robotic Agents (2001)

  2. Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multi-robot planning activities and plans execution. In: Thirteenth European Conference On Artificial Intellingence (1998)

  3. ALWSE-MC: http://nswcpc.navsea.navy.mil/analysis/capabilities.asp (2009)

  4. Balch, T., Arkin, R.C.: Communication in reactive multiagent systems. Auton. Robots 1(1), 1–25 (1994)

    Article  Google Scholar 

  5. Botelho, S., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (1999)

  6. Brucker, P.: Scheduling Algorithms. Springer, New York (2001)

    MATH  Google Scholar 

  7. Brucker, P.: Scheduling and constraint propagation. Discrete Appl. Math. 123, 227–256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brucker, P., Knust, S.: Complex Scheduling. Springer, New York (2006)

    MATH  Google Scholar 

  9. CPLEX Manual: ILOG-CPLEX-9.0-UserMan. http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/index.html (2009)

  10. Dahl, T.S., Mataric, M.J., Sukhatme, G.S.: Emergent robot differentiation for distributed multi-robot task allocation. In: Distributed Autonomous Robotic Systems (DARS) (2004)

  11. DEMiR-CF Scenarios: Khepera II DEMiR-CF Videos. http://web.itu.edu.tr/sariel/videos/KheperaII-Movies.html (2009)

  12. desJardins, M., Durfee, E., Ortiz, C., Wolverton, M.J.: Survey of research in distributed, continual planning. AI Mag. 20(4), 13–22 (1999)

    Google Scholar 

  13. Dias, M.: Traderbots: A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environments. Phd thesis, Robotics Institute, Carnegie Mellon University (2004)

  14. Dias, M., Zinck, M., Zlot, R.M., Stentz, A.: Robust multirobot coordination in dynamic environments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2004)

  15. Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  16. Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language. MIT Press, Cambridge. Chap Software Agents (1997)

    Google Scholar 

  17. FIPA ACL: FIPA ACL Message Structure Specification. http://www.fipa.org/specs/fipa00061/SC00061G.pdf (2002)

  18. Gancet, J., Hattanberger, G., Alami, R., Lacroix, S.: Task planning and control for a multi-uav system: Architecture and algorithms. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2005)

  19. Gerkey, B., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  20. Gerkey, B., Mataric, M.J.: A formal analysis and taxonomy of task allocation. Int. J. Rob. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  21. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2005)

    Article  Google Scholar 

  22. Lemaire, T., Alami, R., Lacroix, S.: A distributed task allocation scheme in multi-uav context. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2004)

  23. Ossowski, S.: Co-ordination in Artificial Agent Societies, Social Structure and Its Implications for Autonomous Problem-Solving Agents. Springer, New York (1999)

    Google Scholar 

  24. Paquet, S.: Distributed Decision-Making and Task Coordination in Dynamic, Uncertain and Real-Time Multiagent Environments. Phd thesis, Laval University, Quebec (2006)

  25. Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  26. Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution synthesis. Proc. IEEE (Special Issue on Multi-Robot Systems) 94(7), 1289–1305 (2006)

    Google Scholar 

  27. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer, New York (2005)

    MATH  Google Scholar 

  28. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, New York (1994)

    Google Scholar 

  29. Sariel, S.: An Integrated Planning, Scheduling and Execution Framework for Multi-Robot Cooperation and Coordination. Phd thesis, Istanbul Technical University, Turkey (2007)

  30. Sariel, S., Balch, T., Erdogan, N.: Incremental multi-robot task selection for resource constrained and interrelated tasks. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2007)

  31. Sariel, S., Balch, T., Erdogan, N.: Naval mine countermeasure missions: a distributed, incremental multirobot task selection scheme. IEEE Robot. Autom. Mag. 15(1), 45–52 (2008)

    Article  Google Scholar 

  32. Sariel, S., Balch, T., Erdogan, N.: Multiple traveling robot problem: A solution based on dynamic task selection and robust execution. IEEE/ASME Trans. Mechatron. 14(2), 198–206 (2009)

    Article  Google Scholar 

  33. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101, 165–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Smith, R.G.: The contract net protocol: high level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  35. Toth, P., Vigo, D.: The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  36. Vig, L., Adams, J.A.: Issues in multi-robot coalition formation. In: Multi-Robot Systems. From Swarms to Intelligent Automata, vol. III, pp. 15–26 (2005)

  37. WEBOTS: Webots User Guide (2009)

  38. Weglarz, J.: Project Scheduling: Recent Models, Algorithms and Applications. Kluwer, Dordrecht (1999)

    Google Scholar 

  39. Zlot, R., Stentz, A.: Market-based multirobot coordination for complex tasks. Int. J. Rob. Res. 25(1), 73–101 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanem Sariel-Talay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sariel-Talay, S., Balch, T.R. & Erdogan, N. A Generic Framework for Distributed Multirobot Cooperation. J Intell Robot Syst 63, 323–358 (2011). https://doi.org/10.1007/s10846-011-9558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9558-4

Keywords

Navigation