Skip to main content
Log in

Mini Rotorcraft Flight Formation Control Using Bounded Inputs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, the flight formation control and trajectory tracking control design of multiple mini rotorcraft systems are discussed. The dynamic model of a mini rotorcraft is presented using the Newton-Euler formalism. Our approach is based on a leader/follower structure of multiple robot systems. The centroid of the coordinated control subsystem is used for trajectory tracking purposes. A nonlinear controller based on separated saturations and a multi-agent consensus algorithm is developed. The analytic results are supported by simulation tests. Experimental results include yaw coordination and tracking only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X., Serrani, A.: ISS-based robust leader/follower trailing control. In: LNCIS 336 Group Coordination and Cooperative Control. Springer, Germany (2006)

    Google Scholar 

  2. Guerrero, J.A., Fantoni, I., Salazar, S., Lozano, R.: Flight formation of multiple mini rotorcraft via coordination control. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)

  3. Guilietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. IEEE Control Syst. Mag. 20(6), 34–44 (2000)

    Article  Google Scholar 

  4. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conf. on Decision and Control (2001)

  5. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A Coordination Architecture for Spacecraft Formation Control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  6. Arrichiello, F., Chiaverini, S., Fossen, T.I.: Formation control of marine vessels using the null-space-based behavioral control. InL LNCIS 336 Group Coordination and Cooperative Control. Springer, Germany (2006)

  7. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  8. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2451–2456 (2004)

  9. Lara, D., Sanchez, A., Lozano, R., Castillo, P.: Real time embedded control system for VTOL aircrafts: application to stabilize a quad-rotor helicopter. In: Proceedings of the IEEE Conference on Control Applications (2006)

  10. Erginer, B., Altug, E.: Modeling and PD control of a quadrotor VTOL vehicle. In: IEEE Intelligent Vehicles Symposium, pp. 894–899 (2007)

  11. La Civita, M., Papageorgiou, G., Messner, W.C., Kanade, T.: Design and flight testing of a gain-scheduled H ∞  loop shaping controller for wide-envelope flight of a robotic helicopter. In: Proc. of the 2003 American Control Conference, pp. 4195–4200 (2003)

  12. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Automat. Contr. 48(3), 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  13. Lozano, R.: Objets volants miniatures: modelisation et commande embarquee. Hermes–Lavoisier (2007)

  14. Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini-rotorcraft having four rotors. IEEE Control Syst. Mag. 25(6), 45–55 (2005)

    Article  MathSciNet  Google Scholar 

  15. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part I: fixed topology. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui (2003)

  16. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part II: dynamic topology. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui (2003)

  17. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Automat. Contr. 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  18. Ren, W.: Consensus seeking in multi-vehicle systems with a time varying reference state. In: Proceedings of the 2007 IEEE American Control Conference, NY (2007)

  19. Lee, D.J., Li, P.Y.: Formation and maneuver control of multiple spacecraft. In: Proceedings of the IEEE American Control Conference, Denver (2003)

  20. Lee, D.J., Spong, M.W.: Flocking of multiple inertial agents on balanced graph. In: Proceedings of the IEEE American Control Conference (2006)

  21. Hokayem, P., Stipanovic, D., Spong, M.W.: Reliable control of multi-agent formations. In: Proceedings of the IEEE American Control Conference, New York (2007)

  22. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. In: Proc. of Robotics: Science and Systems, Seattle, WA (2009)

  23. Oung, R., Bourgault, F., Donovan, M., D’Andrea, R.: The distributed flight array. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)

  24. Godsil, C., Royle, G.: Algebraic graph theory. Springer (2001)

  25. Sussmann, H.J., Sontag, E.D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Automat. Contr. 39(12), 2411–2425 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lozano, R., Spong, M.W., Guerrero, J.A., Chopra, N.: Controllability and observability of leader based multi-agent systems. In: IEEE Conference on Decision and Control, Cancun, Mexico (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Alfredo Guerrero.

Additional information

This material is based on work supported by the project SIRENE CARNOT CA10/154 UTC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, J.A., Castillo, P., Salazar, S. et al. Mini Rotorcraft Flight Formation Control Using Bounded Inputs. J Intell Robot Syst 65, 175–186 (2012). https://doi.org/10.1007/s10846-011-9575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9575-3

Keywords

Navigation