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Abstract

We will in this paper address the problem of offline path planning for Unmanned Aerial Vehicles

(UAVs). Our goal is to find paths that meet mission objectives, are safe with respect to collision and

grounding, fuel efficient and satisfy criteria for communication. Due to the many nonconvex constraints

of the problem, Mixed Integer Linear Programming (MILP) will be used in finding the path. Approximate

communication constraints and terrain avoidance constraints are used in the MILP formulation. To

achieve more accurate prediction of the ability to communicate, the path is then analyzed in the radio

propagation toolbox SPLAT!, and if the UAVs are not able to communicate according to design criteria

for bandwidth, constraints are modified in the optimization problem in an iterative manner. The approach

is exemplified with the following setup: The path of two UAVs are planned so they can serve as relay

nodes between a target without line of sight to the base station.

I. INTRODUCTION

A. Background and motivation

Applications of UAVs proposed in literature include localization of radars [1], wildfire man-

agement, polar climatology, agricultural monitoring, border surveillance [2], reconnaissance, geo-
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physical survey, environmental and meteorological monitoring, aerial photography, and search-

and-rescue tasks [3]. In general, autonomous vehicles are chosen for tasks that are either dirty,

dull or dangerous, or to missions where there is a cost reduction potential. Our research is mainly

motivated by emerging applications such as Arctic offshore oil exploration, oil spill recovery,

and complex long range multi-vehicle missions in areas without a permanent communication

infrastructure. The newly signed treaty of the delimitation in the Barents sea between Norway and

Russia, and recent technological improvements will make new areas available for oil explorations.

With the polar ice melting, the same area could potentially be the favored traffic route between

eastern Asia and Europe. The harsh weather of the Barents sea require enhanced monitoring and

preparedness and reduced mobilization time, to ensure safety of personnel and material in case of

accidents, and to avoid environmental catastrophes in one of the world richest marine ecosystems.

Satellite monitoring and communication is currently disfavored due to poor coverage of the Arctic

regions and lack of immediate presence due to their orbiting nature. The low bandwidth available

for civilian users, typically 2-3 kbits/s and 3-4 seconds latency using a civilian system such as

Iridium, is another reason why satellite communication alone is currently inadequate for missions

that require extensive exchange of high resolution, real time data. Manned aircraft, on the other

hand, are too costly and require too much of human resources for extensive operations in large

areas.

B. Terminology

For later reference we will present the following terminology taken from [2]: Meshing: a

networking architecture where each node can act as a relay to forward data; Mobile ad-hoc

network (MANET): mesh architecture comprised of a self-configuring network of mobile routers

which are free to move randomly throughout the environment; Direct communication: Occurs

when two nodes transmit data directly to one another; Relaying: Occurs when additional nodes

are used to receive a transmission from a source and retransmit it to a destination; Ferrying:

Occurs when a mobile node physically stores and carries data from one location to another.

If the nodes are separated by a distance or obstacles that have major influence on the com-

munication bandwidth and real-time availability is not an issue, ferrying may be preferred to

relaying and direct communication. Two different ferry path models are treated in [4], namely

the chain-relay model and the conveyor-belt model.
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C. Previous work and available technology

There are several simulators available for MANET community, see for instance [5]. Both the

most popular open source network simulator, NS-2 and the most popular commercial network

simulator, OPNET, has several radio propagation models available, where the latter has been

evaluated for an UAV network in [6]. The impact of radio propagation model on MANET

simulations, can be found in [7], [8] and [9]. For military applications there are several toolboxes

developed for planning with respect to communication conditions, see for instance [10], [11]

or the commercially available HTZ Warfare by ATDI. Similar problems to the one addressed

in this paper, has been treated in [12], where relay chains are generated solving the all hops

optimal path (AHOP) graph search problem. Two algorithms are presented that solves the AHOP

problem; a dual ascent algorithm and a modification of the Bellman-Ford algorithm. Location

and movement of UAVs are optimized in [13], in order to improve the connectivity of a wireless

network, when quantifying different types of network connectivity. Optimizing communication

by controlled mobility of network nodes is also addressed in [14], and in [15] the optimal

placement of fixed relay nodes is treated. In [16] a decentralized extremum-seeking control

algorithm for nonholonomic vehicles to form a communication chain is presented. In [17] path

planning and path finding algorithms for multiple UAVs are studied. The performance of the

algorithms, Dijkstra’s algorithm, Bellman Ford’s algorithm, Floyd Warshall’s algorithm and the

A? algorithm, are compared.

In this paper, MILP is used for path planning. In this context the following papers are

particularly relevant: For a general introduction to mixed-integer programming for control, [18],

[19] and [20] are recommended. In [21] MILP is used for UAV path planning, while constraining

the probability of detection. In [22] the coordination and control of multiple UAVs are solved

using MILP. Online connectivity-constrained trajectory planning for autonomous helicopters

through cluttered environment are treated in [23]. In [24] MILP is used for optimizing the

task allocation problem for a fleet of UAVs with tightly couples tasks and rigid relative timing

constraints. In [25] the differential flatness property of the planar kinematic model of an UAV

is used to derive linear constraints on the rotational velocity. MILP formulations for real-time

mission scheduling of UAVs in hostile environment is treated in [26]. In [27] a optimal control

problem of multiple UAVs under terrain- and communication constraints is transformed into
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a MILP problem. Although the number of binary variables is often a poor indicator of the

complexity of integer programming problems [18], it might be useful to reduce this number

as the number of nodes in the solution tree grows exponentially with the number of binary

variables. Some heuristic solutions related to this for cooperative vehicles are presented in [28].

See also [29] for an iterative MILP algorithm that use fewer binary variables than standard MILP

methods, and require less computational effort. A different strategy to deal with the computational

complexity of path planning by MILP is treated in [30], where a tunnel of convex polytopes

based on a shortest path to the goal is used as constraints in the MILP formulation.

D. Contribution

In this paper we deal with some of the assumptions commonly made about wireless networks,

[31]: “The world is flat”; “A radio’s transmission area is circular”; “All radios have equal range”;

“If I can hear you, you can hear me”; “If I can hear you at all, I can hear you perfectly”; and

“Signal strength is a simple function of distance”. MILP is used for path planning for UAVs

where a simple function for the communication range is considered. We then use SPLAT! [32]

to give an estimate of the path loss between each vehicle at every time sample. Based on the

calculations by SPLAT! new constraints are added to the MILP problem to restrict the distance

between vehicles at time samples where the path loss is assumed to be too high to maintain

communication at the desired rate. The process is then repeated until paths are found in which

communication can be maintained by a predefined criterion. The Windows version of SPLAT!

we use were provided by [33]. SPLAT! uses digital elevation data, for instance from the Space

Shuttle Radar Topography Mission (SRTM), to calculate field strength and path loss based on

the Longley-Rice Irregular Terrain Model [34]. To easily toggle between different solvers within

the MATLAB environment, the modeling language YALMIP is used [35]. The solvers used were

the Gurobi Optimizer 4.01 and IBM ILOG CPLEX Optimization Studio 12.22. We will like to

emphasize that we in this paper do not intend to perform a comparison of different solvers, but

to some extent seek to test if different strategies are beneficial independent of the solver used.

For an overview of available solvers for MILP problems, the interested reader is referred to [36].

1http://www.gurobi.com
2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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The interface for Gurobi were provided by [37]. We also would like to make the reader aware

of that the solution to the MILP optimization problem is not necessarily unique, and that since

integer programming in general is NP hard, so is MILP.

II. COORDINATE SYSTEMS

We will make use of the follwing coordinate systems:

ECEF: The Earth-Centered Earth-Fixed frame, is as the name indicates, a coordinate system

which origin is at the center of Earth, and with axes rotating with the angular velocity of Earth.

ENU: The East-North-Up coordinate frame is a local geodetic coordinate system whose tangent

plane is fitted to the geodetic reference ellipse at some convenient point for local measurements.

The x axis points towards east, the y axis points towards true north and the z axis completes the

right handed orthogonal frame by pointing away from the Earth perpendicular to the reference

ellipsoid.

The World Geodetic System (WGS) is a standard which defines a reference ellipsoid used for

navigation, geodesy and cartography. The SRTM digital elevation maps contains data on different

formats, but in this paper we have used data whose elevation is with respect to the reference

ellipsoid defined in WGS84. The terrestrial presentation is in terms of the ellipsoidal parameters

longitude l, (geodetic) latitude µ and ellipsoidal height h. The transformation between these

parameters and the coordinates of the ENU frame is a two-step procedure. First longitude,

latitude and height are transformed into the coordinates of the ECEF frame. For this, and the

reverse transformation, we use the toolbox accompanying [39]. Then the ECEF coordinates are

transformed into coordinates of the ENU frame by using the rotation matrix

RENU
ECEF =


− sin l cos l 0

− sinµ cos l − sinµ sin l cosµ

cosµ cos l cosµ sin l sinµ

 (1)

which is found by two principal rotations; a rotation µ−π/2 about the x axis, and then a rotation

−l − π/2 about the z axis.

The origin of the ENU frame is in this paper chosen to be at longitude, latitude and height,

specified by the vector XWGS = (63.400, 10.32, 0).
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III. MILP FORMULATION

At the planning problem considered in this paper we assume that the pth UAV is simply

described by the discrete time model

pp(i+1) = ppi + ∆tvpi , (2)

∀p ∈ {1, . . . , np}, where np is the number of UAVs, ∆t is the sample time, and ppi :=

(xpi, ypi, zpi)
>, and vpi := (v1pi, v2pi, v3pi)

>, with xp, yp, zp and v1p, v2p, v3p being the positions

and velocities, respectively, along the orthogonal axes of a local ENU coordinate reference frame.

A. Fuel penalty

For an aircraft in transit, the fuel consumption will be proportional to the air resistance,

which again is assumed proportional to the square of the velocity. For small deviations about the

typical cruise speed V cruise
p of vehicle p, we have the following approximation of the square of

the velocity at time step i using the first terms of the Taylor series: ||vpi||2 = V 2
pi ≈ (V cruise

p )2 +

2V cruise
p (Vpi − V cruise

p ). To penalize the fuel consumption we propose the cost function term

Jdrag =

np∑
p=1

N−1∑
i=0

tp
(
(V cruise

p )2 + 2V cruise
p (V approx

pi − V cruise
p )

)
, (3)

where tp ∈ R≥0 is a weighting factor, N := T/∆t, with T is the horizon over which we

optimize, and V approx
pi is an approximation of the true magnitude of the velocity vector, Vpi. The

optimization variable V approx
pi is found in a similar manner as in [21], here extended to the three

dimensional case, by introducing the constraints:

v>piξkl ≤ V approx
pi , (4)

αvelv>piξkl ≥ V approx
pi −M vel

pkl(1− bvel
pikl) , (5)

∀p ∈ {1, . . . , np}, i ∈ {0, . . . , N − 1}, k ∈ {1, . . . , Dvel/2}, l ∈ {1, . . . , Dvel}, where bvel
pikl ∈

{0, 1} are optimization variables, Dvel is some constant even integer greater or equal to four,

and

ξkl :=


cos (θk) sin (φl)

sin (θk) sin (φl)

cos (φl)

 , (6)
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with θk := 2πk/Dvel and φl := 2πl/Dvel. The accuracy of the approximation depends on

αvel which is a constant slightly greater than one. The closer to one αvel is, the better is the

approximation, however, taking it too close may have a negative impact on the computation time

of the MILP problem. Furthermore, we require that

Dvel∑
k=1

Dvel/2∑
l=1

bvel
pikl = 1 , (7)

∀p ∈ {1, . . . , np}, i ∈ {0, . . . , N − 1}. In theory, the constant M vel
pkl could be taken arbitrarily

large, but for computational efficiency this is not recommended [18, Page 196]. We can for

instance pick

M vel
pkl := max

v1pi,v2pi,v3pi∈[−V p,V p]

V
approx
pi ∈[V p,V p]

{
αvelv>piξkl − V

approx
pi

}
(8)

where V p and V p are the minimum and maximum velocity, respectively, of vehicle p. In YALMIP,

logic implications can be expressed instead of big-M formulations such as (5), and YALMIP

will will automatically derive big-M coefficients by analyzing the expression. As pointed out

in [40], provided that the objective function favors minimum time solutions, the two-norm

approximation of a two dimensional vector requires D constraints at each time step, where

as extending this approach to three dimensions typically requires D2/2 constraints. In our case,

minimum time solutions are not necessarily favored in the objective function, and we also need

the additional constraints in (5), meaning that the approximation requires a total of D2 constraints.

If computation time is of major importance, it is in that respect better to use the approximation

in [41] which only requires 3D constraints, or strategically allocate the constraints as in [42] to

improve the two norm approximation in a direction of interest.

Beyond cruising, fuel consumption is assumed to be proportional to the acceleration, but this

is only of secondary importance in our setup so we will pursue a simpler approach than for

penalizing the velocity magnitude. The following cost function term is proposed in [43]:

J acc =

np∑
p=1

N−2∑
i=0

r>pw
acc
pi , (9)

with the additional constraints

(vjpk − vjpi) ≤ wacc
jpi , (10)

−(vjpk − vjpi) ≤ wacc
jpi , (11)
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∀p ∈ {1, . . . , np}, k = i+ 1, i ∈ {0, . . . , N − 2}, j ∈ {1, 2, 3} where wacc
pi := (wacc

1pi, w
acc
2pi, w

acc
3pi)
>

and rp ∈ R3
≥0 is a nonnegative weighting vector. The motivation behind (9) is to penalize the

absolute value of acceleration in each direction of the ENU frame, and to avoid a piecewise

linear cost function, we have introduced slack variables wacc
jpi.

At last we will include a term to account for the gravitational effects, namely,

Jgravity =

np∑
p=1

gp(zp0 − zp(N−1)) , (12)

where gp ∈ R≥0 is a weighting factor of vehicle p, and zp0 and zp(N−1) are the initial and final

position of vehicle p in the up-direction. Of simplicity we will use that the achieved potential

energy, is approximately the energy spent by climbing.

B. Position and speed constraints

There are typically restrictions on where UAVs are allowed to fly. This may for instance be

air space used for commercial air traffic, air space over a certain altitude, or air space over

densely populated areas. In addition the operator might want to avoid flying into regions with

bad weather, outside the area where the operator is able to communicate with UAVs or in case of

military applications: areas with enemies and enemy radars. If the region the UAVs are required

to stay within is convex (e.g. a rectangular box), the constraints may simply be written

x ≤xpi ≤ x , (13)

y ≤ypi ≤ y , (14)

z ≤zpi ≤ z , (15)

∀p ∈ {1, . . . , np}, i ∈ {1, . . . , N}, where x, y, z and x, y, z are the lower and upper bounds,

respectively, on the state vector in the east, north and up directions. x, y, z and x, y, z are constants

provided to the optimizer at start-up.

More complex (nonconvex) regions can be defined as unions of rectangles by introducing

integer auxiliary variables. An obstacle, denoted by o, which the UAVs are required to avoid,

may be be approximated by the outside of a rectangular box, which leads to the following
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constraints

xo −M obs
o1 b

obs
pio1 ≤ xpi≤ xo +M obs

o2 b
obs
pio2 , (16)

yo −M obs
o3 b

obs
pio3 ≤ ypi≤ y

o
+M obs

o4 b
obs
pio4 , (17)

zo −M obs
o5 b

obs
pio5 ≤ zpi≤ zo +M obs

o6 b
obs
pio6 , (18)

6∑
l=1

bobs
piol ≤ 5 , (19)

∀p ∈ {1, . . . , np}, i ∈ {1, . . . , N}, o ∈ {1, . . . , no}, where no is the number of obstacles,

bobs
pil ∈ {0, 1} are variables of the optimization problem, xo, yo, zo and xo, yo, zo are the lower and

upper bounds, respectively, on obstacle o in the east, north and up directions. (See for instance

[44] for avoidance of more general obstacles.) We pick M obs
o1 := maxxpi∈[x,x] {xo − xpi} = xo−x

and similar for M obs
o2 to M obs

o6 .

In [45] and [46], among others, the (two dimensional) velocity vector is required to be within

a regular polygon which over-approximates the circle of radius equal to the maximum speed.

A polygon that under-approximates this circle is used in [21]; see also [25] for a different

approach. In [3], the velocity constraints are extended to three dimensions, by requiring that three

dimensional velocity vector is within a polyhedron whose radius approximates the maximum

speed. As the speed of the vehicles are approximated by (4), (5) and (7), we simply use that

V p ≤ V approx
pi ≤ V p , (20)

∀p ∈ {1, . . . , np}, i ∈ {0, . . . , N−1}, where V p and V p are the minimum and maximum velocity,

respectively, of vehicle p. We have chosen to ignore the physical properties of the UAVs of being

able to descend faster than they can climb.

C. Connectivity constraints

The approach taken in this section is motivated by the approach of [27]. We will in the

following refer to base stations and vehicles involved in the radio communication as nodes. Of

simplicity, we will assume that the ability of node p to successfully transmit data at a specified

rate to node q, at some time instance i, depends on whether the relative distance between the two

nodes are below a certain threshold, Rpqi. This threshold would typically depend on the antenna

gains of the receiver and transmitter node, surrounding terrain, data rate, etc. We stress that Rpqi



10

(a) D = 4 (b) D = 6

(c) D = 8 (d) D = 10

Fig. 1. The constraints χ>ξkl ≤ 1, ∀k ∈ {1, . . . , D/2}, l ∈ {1, . . . , D} with discretization level: (a) D = 4, (b) D = 6, (c)

D = 8 and (d) D = 10.

is not necessarily equal to Rqpi, that is, the threshold depends on the direction of communication.

Instead of requiring that node q are within a sphere of radius Rpqi of node p, we require that node

q is within a polygon that approximates the sphere. The approximation is formed by taking the

inner product of the vector χpqi := (xpi−xqi, ypi−yqi, zpi−zqi)> and the unit vectors ξkl defined

by (6) where θk := 2πk/Dcon and φl := 2πl/Dcon and k ∈ {1, . . . , Dcon/2}, l ∈ {1, . . . , Dcon}

and the discretization level Dcon is some constant even integer greater or equal to 4. The polygon

over-approximates the sphere as seen in Figure 1, where the radius is simply taken as unity.

We also introduce binary indicator variables b̃con
pqi ∈ {0, 1} such that

b̃con
pqi = 1 ⇐⇒ χ>pqiξkl −Rpqi ≤ 0 , (21)

∀p ∈ {0, . . . , np+1}, q ∈ {p+1|p 6= np+1}∪{p−1|p 6= 0}, i ∈ {1, . . . , N}, k ∈ {1, . . . , Dcon/2},

l ∈ {1, . . . , Dcon} that is, the indicator variable b̃con
pqi is true if and only if, node p can directly

transmit to vehicle q, where p = 0 denote the base station and p = np + 1, denote the target.

Relating this to graph theory, the matrix Ai, with elements [Ai]pq = b̃con
pqi, is the adjacency matrix
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at time step i. The logical statement in (21) can be achieved by the introduction of a number

of additional optimization variables bcon
pqikl, see Proposition 1. In the example of Section V, we

require an ordered communication chain, and the indicator variables will have to satisfy the

constraints

χ>pqiξkl −Rcon
pqi ≤ M con

pqkl(1− bcon
pqikl) , (22)

χ>pqiξkl −Rcon
pqi ≥ ε+ (mcon

pqkl − ε)bcon
pqikl , (23)

b̃con
pqi ≤ bcon

pqikl , (24)

and
Dcon∑
k=1

Dcon/2∑
l=1

bcon
pqikl − b̃con

pqi ≤
(Dcon)

2

2

− 1 , (25)

∀p ∈ {0, . . . , np + 1}, q ∈ {p + 1|p 6= np + 1} ∪ {p − 1|p 6= 0}, ∀i ∈ {1, . . . , N}, k ∈

{1, . . . , Dcon/2}, l ∈ {1, . . . , Dcon}, where ε is a small positive scalar, mcon
pqkl := min{χ>pqiξkl −

Rcon
pqi} and M con

pqkl := max{χ>pqiξkl − Rcon
pqi}, with the minimum and maximum taken over all

addmissible χpqi. We now introduce the additional optimization variable bchain
i ∈ {0, 1} at each

time step i, and the constraints
np∑
p=0

b̃con
pqi − bchain

i ≤ (np + 1)− 1 , (26)

∀i ∈ {1, . . . , N} and q = p+ 1

np+1∑
p=1

b̃con
pqi − bchain

i ≤ (np + 1)− 1 , (27)

∀i ∈ {1, . . . , N} and q = p− 1

bchain
i ≤ b̃con

pqi , (28)

∀i ∈ {1, . . . , N}, p ∈ {0, . . . , np}, and q = p+ 1, and

bchain
i ≤ b̃con

pqi , (29)

∀i ∈ {1, . . . , N}, p ∈ {1, . . . , np + 1}, and q = p − 1. These constraints enforces the binary

optimization variable bchain
i to be true if and only if there is a two-way communication chain

between the base station and the target. We also add the cost function term

J chain = γchain
N∑
i=1

(1− bchain
i ) , (30)
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where γchain is a weighting factor to our objective function, which emphasizes the importance

for being within each others communication range. Notice that our approach differs from the

approach of [27], in that we implement communication as a soft constraint. This may result in

slightly more unreliable communication being favored, but allows the nodes to be outside of

each others communication range at start-up.

It is common to assume, see for instance [48], that the communication connectivity constraints

only depends on the relative distance between the vehicles. We emphasize that this assumption,

although used in the above constraints, will be relaxed later in this paper.

D. Anti-collision constraints

To avoid collision between vehicles we will implement the method of [43]. Let that the

position of vehicle p and vehicle q at the ith time-step be given by (xpi, ypi, zpi) and (xqi, yqi, zqi),

respectively. The constraints are given as

dx −M col
pq1b

col
pqi1 ≤ xpi − xqi≤M col

pq2b
col
pqi2 − dx , (31)

dy −M col
pq2b

col
pqi3 ≤ ypi − yqi≤M col

pq4b
col
pqi4 − dy , (32)

dz −M col
pq3b

col
pqi5 ≤ zpi − zqi ≤M col

pq6b
col
pqi6 − dz , (33)

6∑
l=1

bcol
pqil ≤ 5 (34)

where bcol
pqil ∈ {0, 1} are binary variables of the optimization algorithm, ∀p ∈ {1, . . . , np−1}, q ∈

{p+ 1, . . . , np}, i ∈ {1, . . . , N}, where dx, dy and dz are the safety distances in the east, north

and up directions, respectively. The minimum separation distance while still maintaining the

possibility for avoidance maneuvers can for instance be calculated by reachability analysis, see

[49]. The constant M col
pq1 can for instance be chosen as M col

pq1 := x− x+ dx with x, x as in (13),

and correspondingly for M col
pq2 to M col

pq6.

E. Anti grounding constraints

As in [44] we will represent the terrain as triangulated irregular network (TIN). Terrain avoid-

ance constraints in MILP form are given in [50], and will be used here. T TIN non-overlapping

triangles with mTIN vertices Pl(xTIN
l , yTIN

l , hTIN
l ) are used to represent the piecewise affine terrain
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Fig. 2. Top view of a TIN with vertices Pl, l ∈ {1, . . . , 7}, and to the right the corresponding sets Dl of triangles which have

Pl as common vertex.

surface. The point strictly below vehicle p at time step i is given by (xpi, ypi, hpi), and satisfy

xpi =
mTIN∑
l=1

λTIN
pil x

TIN
l , (35)

ypi =
mTIN∑
l=1

λTIN
pil y

TIN
l , (36)

hpi =
mTIN∑
l=1

λTIN
pil h

TIN
l , (37)

mTIN∑
l=1

λTIN
pil = 1 , (38)

λTIN
pil ≤

∑
t∈Dl

bTIN
pit , ∀l = {1, . . . ,mTIN} , (39)

T TIN∑
t=1

bTIN
pit = 1 , (40)

and λTIN
pil ∈ [0, 1], ∀p ∈ {1, . . . , np}, i ∈ {1, . . . , N}, where the binary variables bTIN

pit ∈ {0, 1}

corresponds to triangle t, and Dl is the set of the serial-numbers of triangles that have common

vertex Pl. An example of this is shown in Figure 2. Finally, the terrain avoidance constraint can

be expressed as

zpi ≥ hpi + dTIN , (41)
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where dTIN is the minimum vertical distance from the UAVs to the ground. We emphasize that

xpi, ypi, zpi are the position of the vehicle p at time step i as defined in the beginning of Section

III and are variables of the optimization problem. Furthermore, in the terrain anti-grounding

problem, we have introduced the following variables of the optimization problem: hpi, λTIN
pil and

bTIN
pit . The constant dTIN representing the safety distance between the UAVs and the ground, and

the constants xTIN
l , yTIN

l , hTIN
l which represents the coordinates of the triangle’s vertices, are

known a priori. The TIN is generated by Delaunay triangulation using the elevation data. To

reduce the complexity of the problem, only a subset of the data available are used in the MILP

formulation. Based on incremental Delaunay triangulation, implemented in [51], points from the
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Fig. 3. Elevation data is shown in (a). The other figures show the generated TIN with labels denoting maximum relative vertical

error to the original data at its sample points. This requires (b) mTIN = 16 vertices and T TIN = 24 triangles, (c) mTIN = 37

vertices and T TIN = 62 triangles and (d) mTIN = 169 vertices and T TIN = 318 triangles.

elevation data is added until the desired vertical accuracy between the data and the triangulation

is achieved. This process is shown in Figure 3. Special care must be taken by low altitude flight,
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because although (41) is satisfied at each time step i, a linear interpolation between two time

steps may intersect the ground, if the ground is locally concave down. In this paper we will

not address this issue, but simply choose the vertical distance from the UAVs to the ground

sufficiently large, and the timesteps sufficiently small.

F. Simplification of the MILP problem

In this section we will investigate different strategies for reducing the computation time of

the MILP problem. We will investigate the effect of taking into consideration the initial position

and the dynamics of the vehicles, which allows us to decide the values of some of the binary

variables.

First we will look at the binary variables related to communication. As mentioned in Section

I-D, the path planning problem will be solved in an iterative manner. Of simplicity we assume

that the communication radius at the first iteration is independent of time, that is Rcon
pqi =: Rcon

pq .

Then, we define dpre as the difference between the initial distance between vehicle p and q and

Rcon
pq , that is

dpre
pq := ||pp(0)− pq(0)|| −Rcon

pq . (42)

If node q is outside a radius Rcon
pq from node p initially, such that dpre

pq > 0, it will stay outside

at least for the time

tpre = floor

{
|dpre|(

V p + V q

)} , (43)

where V p and V q is the maximum velocity of node p and q, respectively, and is zero for the static

nodes. We can then be sure that b̃con
pqi = 1 for all i ≤ tpre/∆t. If, on the other hand, dpre

pq <= 0,

then we will have that b̃con
pqi = 0 and bchain

i = 0 for all i ≤ tpre. The stage is summarized in

Algorithm 1 in the Appendix.

Furthermore, we can also determine some of the binary variables bTIN
pit , by considering the

initial position and the maximum velocity of each vehicle, and the time horizon over which we

optimize. More precisely, we assign bTIN
pit = 0 if the horizontal distance from the initial position

of vehicle p, given by pp0 to triangle t is greater than the distance the vehicle can cover flying

at maximum velocity, V p in i time steps. The horizontal distance between the initial point of

vehicle p and the triangle t is calculated using the function pointTriangleDist(Trit,pp0), see for
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instance [52], where

Trit :=


xTIN
α yTIN

α zp0

xTIN
β yTIN

β zp0

xTIN
γ yTIN

γ zp0

 , (44)

and where xTIN
α , xTIN

β , xTIN
γ and yTIN

α , yTIN
β , yTIN

γ , are the east and north components, respectively,

of the vertices of triangle t. This is summarized in Algorithm 2 in the Appendix. Notice that we

have only considered horizontal flight, that is, we have set the up coordinate of each vertex to

be the the initial altitude vehicle p, zp0. By also taking into account the terrain height and initial

altitude of the UAVs, better approximations of the time to reach over a specific triangle can be

calculated, and further reduced computation time can be expected. If the triangles, above which

the UAVs are initially, are sufficiently large, it may also be beneficial to calculate the least time

they will stay over these triangles. This would allow us to assign bTIN
pit = 1 for some triplets of

p, i and t.

IV. STRUCTURE OF ALGORITHM

The algorithm consists of several different stages, see the flowchart in Figure 4, and is

summarized in Algorithm 3 in the Appendix.

Preprocessing

Optimization

Path loss
computation

End

Yes

No Criterias
satisfied

Change
constraints

Fig. 4. Flow chart of Algorithm 3
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A. Preprocessing of MILP problem

At this stage,we will incorporate the procedures of Section III-F with respect to reducing

computation time.

B. Optimization

At this stage the cost is given by the sum of (3), (9), (12) and (30), i.e.

J = Jdrag + J acc + Jgravity + J chain (45)

is minimized, subject to (2), (4), (5), (7), (10), (11), (13)-(20), (22)-(29) and (31)-(41). In addition,

when solving the MILP repeatedly, we will from the second iteration onwards add the constraint

J chain ≤ J chain,prev,? + γchainεchain (46)

where J chain,prev,? is the cost corresponding to the optimal solution at the previous iteration, and

εchain is a positive integer. The motivation for introducing a bound on J chain, is that it is beneficial

from a computation time perspective, as will be shown in Section V-B. Finding a tight over-

approximation based on the initial positions of the nodes and the maximum velocities of the

vehicles is also possible, but is difficult because terrain might occlude the line of sight. However,

once a solution is obtained we assume that the cost J chain will not change substantially by a

new call to the solver, even if Rcon
pqi in (22) and (23) is reduced by a distance rcon as will be

motivated in Section IV-D. The integer εchain should be chosen large enough to account for a

possible increase in the cost, but also small enough such that the constraint (46) has an effect

on the computation time. Picking εchain too small may turn the optimization problem infeasible.

C. Path loss computation

At this stage the optimal path found in the previous step is investigated using SPLAT!; see

also Section VI for additional elements that could be included at this stage. Similar as in [53],

we will set up at data-link budget. More precisely, we will define the maximum allowed path

loss for node p to successfully transmit to node q at a capacity Ci, by

Lmax
pqi := Tp +GT

p −NJ
q +GR

q −NF
q − SNR(Ci) (47)

with the dependency on the time step i reflecting that the capacity demand may be time varying.

Here, Tp is the power delivered to transmitting antenna in dBm, GT
p is the transmitting antenna
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gain in the direction of the receiver in dBi, NJ
q is the Johnson noise in dBm, GR

q is the receiver

antenna gain in dBi, NF
q is the noise figure in dB of the receiver, and SNR(Ci) is the required

signal-to-noise ratio (and fade margin) to achieve a link capacity of Ci. A theoretical maximum of

the channel capacity based on the signal-to-noise ratio can by found using the Shannon-Hartley

theorem, although the actual usable capacity is better approximated with empirical models as

reported in [54].

D. Change constraints

After the analysis of the path in SPLAT!, some of the communication constraints of the MILP

problem are changed as follows: If the path loss Lpqi ≤ Lmax
pqi , then the communication radius

Rcon
pqi = Rcon

pqi − rcon where rcon is a predefined distance. Evidently if the nodes are not initially

within each others communication range, tightening the bounds Rcon
pqi for small i does not improve

the ability to form a communication chain due to the finite velocity of the vehicles. However,

since there are no hard constraints on the communication, we allow the algorithm to iterate while

Lpqi <= Lmax
pqi , or until Rcon

pqi = 0 for some triplet of p, q and i.

V. SIMULATIONS

In this section we will use two UAVs to form a communication chain from a base station at

(6000, 1000, 150)> to a target station at (2000, 6000, 10)>. A no-fly zone (xo, xo, yo, yo, zo, zo) is

specified at (3500, 5000, 3500, 5000, 0, 500). The initial placement of the UAVs are chosen to be

at (6000, 5500, 250)> and (6000, 5000, 250)>. Table I shows most of the parameters used in the

MILP problem. The digital elevation data provided at [55] were used, with the accuracy shown

in Figure 3(b). The default solver parameters of Gurobi and CPLEX were used, although there

exists algorithms for automatic tuning of MILP solvers, see [56]. The algorithms were run on a

HP EliteBook 8540w, with Intel Core i7 CPU Q720 @1.6 GHz, 16 GB RAM and a Windows 7,

64-bit operating system. Furthermore, we used MATLAB version R2010a and YALMIP version

20101208.

A. Effect of preprocessing

First we will look at the effect of applying Algorithm 1, that is, the effect on the computation

time by calculating the values of binary variables based on initial positions and maximum
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TABLE I

MILP PARAMETERS

Parameter Value Parameter Value

tp 0.1 dx, dy, dz 150

γchain 60 rcon 50

dTIN 100 x 7000

Dvel 8 x 0

Dcon 8 y 7000

V cruise
1 25 y 0

V cruise
2 21 z 500

V 1 33 z 0

V 2 25 V 1, V 2 6

racc
1 , racc

2 (0.01, 0.01, 0.01)> g1, g2 0.01

TABLE II

SOLVER-TIME WITH AND WITHOUT USING ALGORITHM 1.

Case Optimal J Solver-time

Gurobi, no preprocessing 2120.0 991.8

Gurobi, preprocessing 2120.0 993.0

CPLEX, no preprocessing 2120.7 9799.8

CPLEX, preprocessing 2120.0 10027

velocity. When found, these values were added as equality constraints to the MILP prob-

lem described in IV-B, and the results are summarized in Table II. We used Rcon
pqi = 3500

∀p ∈ {0, . . . , 3}, q ∈ {p + 1|p 6= 3} ∪ {p− 1|p 6= 0}, i ∈ {1, . . . , N}. The horizon is 300 s, and

the discretization step is of 3 s. The results show that it is not beneficial to apply Algorithm 1

in our test case, as in addition to the solver-time, some time will be required to calculate the

values of the binary variables in question.

Table III shows the computation time of the same setup, without and with the use of Algorithm

2. The results are definitively more promising in terms of decreased computation time. Before

conclusions can be made, solver times should be averaged over multiple runs and different initial

conditions, a topic which will not be further investigated in this paper.
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TABLE III

SOLVER-TIME WITH AND WITHOUT USING ALGORITHM 2.

Case Optimal J Solver-time

Gurobi, no preprocessing 2120.0 925.3

Gurobi, preprocessing 2119.7 350.8

CPLEX, no preprocessing 2120.7 9384.3

CPLEX, preprocessing 2119.3 1631.7

TABLE IV

COMPARISON OF SOLVER-TIME IN GUROBI WITH AND WITHOUT USING THE BOUND ON J CON (46).

Case Optimal J Optimal J chain Solver-time

Without bound 2870.9 6000 2101.8

With bound, εchain = 1 2871.6 6000 344.5

With bound, εchain = 2 2872.1 6000 1390.5

With bound, εchain = 3 2872.3 6000 1193.6

With bound, εchain = 4 2870.9 6000 958.3

With bound, εchain = 5 2870.9 6000 2235.8

B. Effect of bounding J chain and of warm-start in consecutive iterations

We will now look at what effect bounding J chain has on the computation time. First the

MILP problem of Section IV-B is solved with Rcon
pqi = 3500 ∀p ∈ {0, . . . , 3}, q ∈ {p + 1|p 6=

3} ∪ {p − 1|p 6= 0}, i ∈ {1, . . . , N}, but without any bound on J con. Table IV shows the

computation time of solving the same problem, but with Rcon
pqi = 3400 ∀p ∈ {0, . . . , 3}, q ∈

{p+ 1|p 6= 3} ∪ {p− 1|p 6= 0}, i ∈ {1, . . . , N}, both without and with the additional constraint

(46). The horizon is 300 s, and the discretization step is of 3 s. The results are promising for low

εchain, but come at the expense of the possibility of making the optimization problem infeasible.

Using the same setup tests were carried out to look at the benefits of applying the solution of

the previous iteration for warm-start. It turned out that assigning the complete optimal solution

(i.e. the optimal value of all variables) from the previous iteration, would not lead to decreased

computation time when the communication radius were changed between iterations. However, it
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is reasonable to assume that the results would have been better if less constraints were changed

from one iteration to the next, or if only a subset of the optimal values from the previous call

were provided. This assumption has not been further investigated in this paper. We remark that

both CPLEX and Gurobi support assigning values to a subset of the variables.

C. Path planning results

We will assume that for video communication, a bit rate of C = 8 Mbits/s over a channel

with bandwidth B = 20 MHz, will require a signal-to-noise ratio SNR of 25 dB. The rest of

the communication parameters can be found in Table V. We initially set Rcon
pqi = 4500 ∀p ∈

{0, . . . , 3}, q ∈ {p+ 1|p 6= 3} ∪ {p− 1|p 6= 0}, i ∈ {1, . . . , N} and use rcon = 100. The horizon

is 150 s, and the discretization step is of 3 s. Figure 5 shows a top view of how the planned path

changes as the communication radius is decreased due to the update of Rcon
pqi by calling SPLAT!.

The black diamond in the lower right corner is the base station, and the one in the upper left corner

is the target station. Furthermore, the black square is the no-fly zone and the triangles corresponds

to the TIN. The initial positions of the UAVs are denoted with red diamonds; vehicle p = 1 being

the northernmost. In Figure 6(a), the velocity and the velocity bounds of the UAVs are depicted.

We see that the two UAVs fly at almost full speed until a communication chain is created. From

then on the UAVs fly at low speed to save fuel. The values of the binary variables associated with

connectivity between each node b̃con
pqi, and the communication chain bchain

i are shown in Figure

6(b). The red dotted and dashed lines in Figure 6(c), show how the communication radius Rcon
pqi

is changed from initially being 4500 ∀p ∈ {0, . . . , 3}, q ∈ {p + 1|p 6= 3} ∪ {p − 1|p 6= 0},

i ∈ {1, . . . , N}. The blue lines show the relative distances between the nodes. At last, Figure

6(d) depicts the altitude constraints in red and the altitude of the UAVs in blue. We remark

that the functions being plotted appear continuous due to the interconnection of straight lines

between sample points.

VI. FUTURE WORK

The computation time can possibly be improved by using the regional analysis function in

SPLAT!, which would give an estimate of the area in which the base stations/vehicles are able

to communicate, and therefore the radius of communication in the first call to the MILP solver.

Furthermore, more extensive analysis of the computed path at the Path loss computation stage
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TABLE V

COMMUNICATION PARAMETERS

Parameter Value Parameter Value

B 20MHz C 8Mbits/s

GT
1 , G

T
2 3 dBi GR

1 , G
R
2 3 dBi

GT
0 , G

T
3 6 dBi GR

0 , G
R
3 6 dBi

NJ
0 , NJ

1 , NJ
2 , NJ

3 -101 dBm NF
0 , NF

1 , NF
2 , NF

3 8 dB

T0, T3 37 dBm T0, T3 27 dBm

of the algorithm, see Section IV-C, should be performed. The vehicle-to-ground distance can be

computed in a high accuracy map, compared with a predefined safety criterion, and if the criterion

fails to be satisfied the optimization routine will be called again with additional constraints that

addresses this safety issue. The stage could also include a simulator that captures the kinematics

of the vehicle. Again, if the path resulting from the optimization problem is infeasible taking

the kinematics into account, suitable constraints will be added the MILP problem.

One can also imagine taking other important design criteria of the communication problem into

account, such as bandwidth, transmit power and latency of each node, and the required bandwidth

and accepted latency between end nodes. Traffic flow constraints, traffic flow continuity and

link capacity constraints in a MILP setting although for static nodes, have been introduced

in [57]. Taking this into account in our problem may give answers to the number of nodes

necessary for a specified mission, and whether ferrying and relaying is the preferred form of

communication. In this paper we have not considered the direction of the antennas, which is a

reasonable assumption if the antennas are omni-directional or can be directed independent of

the heading of the vehicles. As shown in [58], it is also possible to incorporate beam-forming

antennas into a MILP formulation.

VII. CONCLUSION

Due to the complexity of the path planning problem, a hierarchical decomposition of the

problem seems attractive. In this paper we have considered what can be thought of as an

exemplification of the middle level abstraction layer. Typically the high level would consist of

a mission plan, where one of the mission objectives could be to create a communication chain
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Fig. 5. Top view of the paths as Rcon
pqi are decreased to correspond to more realistic path loss for the desired communication

bandwidth. The base station and target station are denoted with a black diamond in the lower right and upper left corner,

respectively, where as the black square is the no-fly zone. The starting point of vehicles are denoted with a red diamond. Figure

5(a) corresponds to the case with initial values of Rcon
pqi. Figure 5(b), 5(c) and 5(d), are corresponding plots after 13, 26 and 39

iterations, respectively.

as presented in this paper. At the lower level the path would be further improved by taking

into account high accuracy models of UAVs and environment. At the middle level abstraction

layer, MILP is our preferred choice, among other reasons, because of its ability to give a global

solution, and to take into account non-convex constraints. We have used MILP to calculate paths

of UAVs to form a communication chain between the start and end nodes. We have successfully

demonstrated the ability to plan paths that achieve the desired communication topology, while

minimizing fuel consumption, avoiding collision and no-fly zones, and satisfy altitude constraints

with respect to the terrain. Furthermore, we have in an iterative manner improved the accuracy
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Fig. 6. (a) In black V approx
pi , in blue: ||vpi|| and in red the maximum and minimum velocity V p and V p for p = 1 (top) and

p = 2 (bottom). (b) In dashed line the connectivity b̃con
p(p−1) and in dotted line b̃con

(p−1)p for p = 1 (top), p = 2 (middle top)

and p = 3 (middle bottom). In bottom plot is the value of the binary variable bchain. (c) In blue solid line the relative distance

||pp − pp−1||, in red dotted line the communication radius Rp(p−1), and in red dashed line the communication radius R(p−1)p

for p = 1 (top), p = 2 (middle) and p = 3 (bottom). (d) In black the terrain, in red the minimum and maximum altitude, and

in blue the actual flight height for vehicle p = 1 (top) and p = 2 (bottom).

of the achievable communication rate by simulating the planned path in the radio propagation

program SPLAT!.
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VIII. APPENDIX

A. Proposition

Following [59], we let pi be an atomic proposition or statement, which can either be true

or false. Furthermore, let there for each atomic proposition, be an associated binary decision

variable δi, such that δi = 1 if and only if pi is true, and δi = 0 if and only if pi is false.

Proposition 1:

δ̃ = 1 ⇐⇒
n∧
i=1

fi (x) ≤ 0 ≡




fi (x) ≤Mi (1− δi)

fi (x) ≥ (mi − ε) δi + ε∧n
i=1 δ̃ ≤ δi∑n

i=1 δi − δ̃ ≤ n− 1


where δi is the binary variable associated with the statement fi (x) ≤ 0, Mi := maxx∈X fi (x),

mi := minx∈X fi (x), ε is a small tolerance.

Proof: From [18],[19], δi = 1 ⇐⇒ fi ≤ 0 is true if and only if

fi (x) ≤ Mi (1− δi) ,

fi (x) ≥ (mi − ε) δi + ε ,

which in turn, means that δ̃ = 1 ⇐⇒
∧
i δi = 1. According to [59, Table 4.2], p ⇐⇒ q ≡

(p =⇒ q)∧(q =⇒ p), for some atomic propositions p and q. Therefore, δ̃ = 1 ⇐⇒
∧n
i=1 δi =

1 is equivalent to
(
δ̃ = 1 =⇒

∧n
i=1 δi = 1

)
∧
(∧n

i=1 δi = 1 =⇒ δ̃ = 1
)

. The implication δ̃ =

1 =⇒
∧n
i=1 δi = 1 can be expressed as

∧n
i=1 δ̃ ≤ δi, where as the implication

∧n
i=1 δi = 1 =⇒

δ̃ = 1 can be expressed as
∑n

i=1 δi − δ̃ ≤ n− 1.
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B. Algorithms

Algorithm 1 Preprocessing communication constraints
1: for p = 0 : 1 : np + 1 do

2: for q = p− 1 : 2 : p+ 1 do

3: if q < 0 or q > np + 1 then

4: continue

5: end if

6: dpre
pq = ||pp(0)− pq(0)|| −Rcon

pq

7: tpre = floor

{
|dpre

pq|
(V p+V q)

}
8: i = 0

9: while i ≤ tpre/∆t do

10: if dpre
pq <= 0 then

11: b̃con
pqi = 1

12: else

13: b̃con
pqi = 0

14: bchain
i = 0

15: end if

16: i = i+ 1

17: end while

18: end for

19: end for
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Algorithm 2 Preprocessing terrain constraints
1: for p = 1 : 1 : np do

2: for i = 1 : 1 : N do

3: for t = 1 : 1 : T TIN do

4: dpre
pt = pointTriangleDist(Trit,pp0)

5: if dpre
pt > i∆tV p then

6: bTIN
pit = 0

7: end if

8: end for

9: end for

10: end for

Algorithm 3 Path planning
1: Preprocessing, see section III-F

2: Solve MILP problem

3: P = {0, . . . , np + 1}

4: Qp = {p+ 1|p 6= np + 1} ∪ {p− 1|p 6= 0}

5: I = {0, . . . , N − 1}

6: Find Lpqi using SPLAT!

7: while ∃Lpqi ≥ Lmax
pqi ,∀p ∈ P , q ∈ Qp, i ∈ I do

8: Rpqi = Rpqi − r

9: Solve MILP w/ new constraints

10: Find Lpqi using SPLAT!

11: end while
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