Skip to main content
Log in

Flight Plan Specification and Management for Unmanned Aircraft Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a new concept for specifying Unmanned Aircraft Systems (UAS) flight operations that aims at improving the waypoint based approach, found in most autopilot systems, by providing higher level fligh plan specification primitives. The proposed method borrows the leg and path terminator concepts used in Area Navigation1 (RNAV). Several RNAV leg types are adopted and extended with new ones for a better adaptation to UAS requirements. Extensions include the addition of control constructs that enable repetitive and conditional behavior, and also parametric legs that can be used to generate complex paths from a reduced number of parameters. The paper also covers the design and implementation of a software component that manages execution of the flight plan. To take advantage of current off-the-shelf flight control systems the constructs included in the flight plan are translated to waypoint navigation commands. In this way, the advanced capabilities provided by the flight plan specification language are implemented as a new layer on top of existing technologies. The benefits and the feasibility of the proposed approach for UAS flight plan management are demonstrated by means of a simulated mission that performs the flight inspection of Radio Navigation Aids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flightgear Flight Simulator: http://www.flightgear.org. Last visited: May 2011

  2. ARINC: Navigation system database. ARINC specification 424, 15 edn. Aeronautical Radio Inc., Annapolis, Maryland, USA (2000)

  3. Avery, D.: The evolution of flight management systems. In: IEEE Software, pp. 11–13. IEEE (2011)

  4. Barbier, M., Chanthery, E.: Autonomous mission management for unmanned aerial vehicles. Aerosp. Sci. Technol. 8(4), 359–368 (2004). doi:10.1016/j.ast.2004.01.003. http://www.sciencedirect.com/science/article/B6VK2-4C5VMN4-1/2/3d5501e35d8ee30a3bf95a256bb3734b

    Article  Google Scholar 

  5. Bendea, H., Boccardo, P., Dequal, S., Tonolo, F.G., Marenchino, D., Piras, M.: Low cost uav for post-disaster assessment. In: Proceedings of The XXI Congress of the International Society for Photogrammetry and Remote Sensing (2008)

  6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Extensible Markup Language (XML) 1.1, 2nd edn. World Wide Web Consortium (W3C) (2006). http://www.w3.org/TR/xml11/

  7. Brisset, P., Drouin, A., Gorraz, M., Huard, P.S., Tyler, J.: The paparazzi solution. MAV2006 (2006). http://www.recherche.enac.fr/paparazzi/papers_2006/mav06_paparazzi.pdf

  8. Caveney, D., Sengupta, R.: Architecture and application abstractions for multi-agent collaboration projects. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (2005)

  9. Chao, H., Cao, Y., Chen, Y.: Autopilots for small fixed-wing unmanned air vehicles: a survey. In: International Conference on Mechatronics and Automation (ICMA), pp. 3144–3149. IEEE, Harbin, China (2007)

  10. Cloud Cap Technology: Piccolo user’s guide v2.1.2 (2011). http://www.cloudcaptech.com/download/Piccolo/User%20and%20Integration%20Guides/Version%202.1.2/Piccolo%20User%27s%20Guide.pdf

  11. Erdos, D., Watkins, S.: Uav autopilot integration and testing. In: Region 5 Conference, 2008 IEEE, pp. 1–6, (2008). doi:10.1109/TPSD.2008.4562731

  12. FAA: Aeronautical information manual, official guide to basic flight information and ATC procedures. Federal Aviation Administration. U.S. Department of Transportation (2008)

  13. Farrell, S.M., Jacques, D.R.: Waypoint generation based on sensor aimpoint. In: European Micro Air Vehicle 2009 Conference (2009). http://www.emav09.org/EMAV-final-papers/paper_58.pdf

  14. Federal Aviation Administration: U.S. Department of Transportation: Aviation System Standards. Flight Inspetion Operations Group. Flight Inspetion Handbook. TI 8200.52 (2007)

  15. Herndon, A.A., Cramer, M., Sprong, K.: Analysis of advanced flight management systems (fms), flight management computer (fmc) field observations trials, radius-to-fix path terminators. In: IEEE Digital Avionics Systems Conference. IEEE (2008)

  16. ICAO: Manual on Testing of Radio Navigation Aids, doc. 8071, 4th edn. (2000)

  17. ICAO: Procedures for Air Navigation Services - Aircraft Operations (PANS-OPS), vol. I, , 5th edn. Flight Procedures. International Civil Aviation Organisation, Montreal, Canada (2006). Doc. 8168

  18. Lopez-Leones, J., Vilaplana, M., Gallo, E., Navarro, F., Querejeta, C.: The aircraft intent description language: a key enabler for air-ground synchronization in trajectory-based operations. In: Digital Avionics Systems Conference, 2007. DASC ’07. IEEE/AIAA 26th, pp. 1.D.4–1–1.D.4–12, (2007). doi:10.1109/DASC.2007.4391836

  19. López, J., Royo, P., Barrado, C., Pastor, E.: Applying marea middleware to uas communications. In: Proceedings of the AIAA Infotech@Aerospace Conference and AIAA Unmanned Unlimited Conference 2009. Seattle, Washington, USA (2009)

  20. Mcmanus, M.I.A., Clothier, M.R., Rodney, D., Walker, A.: Highly autonomous UAV mission planning and piloting for civilian airspace operations. In: AIAC-11 Eleventh Australian International Aerospace Congress, 2005 (2005)

  21. MicroPilot: Mp2028 series autopilots. http://www.micropilot.com/products-mp2028-autopilots.htm. Last visited: May 2011

  22. Miller, J.A., Minear, P.D., Niessner, A.F., Delullo, A.M., Geiger, B.R., Long, L.N., Horn, J.F.: Intelligent unmanned air vehicle flight systems. In: AIAA InfoTech@Aerospace Conference (2005)

  23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). doi:10.1109/5.24143

    Article  Google Scholar 

  24. NATO Research and Technology Organisation: Flight testing of radio navigation systems (les Essais en vol des systès de radionavigation) (2000)

  25. Osborne, J., Rysdyk, R.: Waypoint guidance for small uavs in wind. In: Proceedings of the IEEE Conference on Decision and Control, pp. 709–714. IEEE (2006)

  26. Pastor, E., López, J., Royo, P.: UAV payload and mission control hardware/software architecture. IEEE Aerosp. Electron. Syst. Mag. 22(6), 3–8 (2007). doi:10.1109/MAES.2007.384074

    Article  Google Scholar 

  27. Pastor, E., Royo, P., Santamaria, E., Prats, X., Barrado, C.: In-flight contingency management for unmanned aerial vehicles. In: Proceedings of the AIAA Unmanned...Unlimited Conference. AIAA, Seattle, Washington, USA (2009). http://hdl.handle.net/2117/6849

  28. Prats, X., Santamaria, E., Delgado, L., Trillo, N., Pastor, E.: Enabling leg-based guidance on top of waypoint-based autopilots for uas. Aerosp. Sci. Technol. (2011). doi:10.1016/j.ast.2011.09.006. http://www.sciencedirect.com/science/article/pii/S1270963811001477. Available online 24 Sept 2011, ISSN 1270-9638

  29. Procerus Technologies: Kestrel user guide. Procerus Technologies, version 2.0 edn. (2008). http://www.procerusuav.com/Downloads/Manuals/Kestrel_User_Guide.pdf

  30. Ramírez, J., Barrado, C., Pastor, E.: A proposal for using UAS in radio navigation aids flight inspection. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting. AIAA, Orlando, Florida, USA (2009)

  31. Royo, P., López, J., Pastor, E., Barrado, C.: Service abstraction layer for UAV flexible application development. In: Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA, Reno, Nevada, USA (2008)

  32. Santamaria, E.: Formal mission specification and execution mechanisms for unmanned aircraft systems. Ph.D. thesis, Technical University of Catalonia (UPC), Castelldefels, Catalonia, Spain (2010)

  33. Santamaria, E., Barrado, C., Pastor, E., Royo, P., Salami, E.: Reconfigurable automated behavior for uas applications. Aerosp. Sci. Technol. (2011). doi:10.1016/j.ast.2011.09.005. http://www.sciencedirect.com/science/article/pii/S1270963811001465. Available online 24 Sept 2011, ISSN 1270-9638

  34. Santamaria, E., Pérez-Batlle, M., Ramírez, J., Barrado, C., Pastor, E.: Mission formalism for UAS based navaid flight inspections. In: Proceedings of the 9th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. AIAA, Hilton Head, South Carolina, USA (2009)

  35. Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, B.E., Szantoi, Z., Ifju, P.G., Percival, H.F.: Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manage. 74(7), 1614–1619 (2010). doi:10.2193/2009-425

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Santamaria.

Additional information

Area Navigation (RNAV) is a method of Instrument Flight Rules (IFR) navigation that allows an aircraft to follow any course within a network of navigation beacons, rather than navigating directly to and from the beacons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamaria, E., Pastor, E., Barrado, C. et al. Flight Plan Specification and Management for Unmanned Aircraft Systems. J Intell Robot Syst 67, 155–181 (2012). https://doi.org/10.1007/s10846-011-9648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9648-3

Keywords

Navigation