Skip to main content
Log in

Aerodynamic Modelling and Experimental Identification of a Coaxial-Rotor UAV

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A comprehensive design of a Gun Launched Micro Air Vehicle (GLMAV) is presented. The GLMAV rotorcraft is a new Micro Air Vehicle (MAV) concept using two-bladed coaxial contra-rotating rotors and a cyclic swashplate. The MAV packaged in a projectile is launched using the energy delivered by a portable weapon. When it reaches the apogee, the projectile is transformed in such a way that the MAV becomes operational over the zone to be observed. A detailed GLMAV nonlinear mathematical model is presented for hover and near-hover flight conditions and identified from experimental load data using a strain-gage aerodynamic balance. Simplifications brought to the aerodynamic submodel have permitted its linearization in the parameter space. The parameter estimation was based on the Kalman filter estimation method applied to the simplified aerodynamic model and using the input-output data from the experiment. The persistently exciting condition is given in terms of physical variables of the GLMAV through two simple expressions. The identification results are presented and validated through comparisons between the model output and real load data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, S.M., Chipperfield, A.J., Tokhi, M.O.: Modelling and control of a twin rotor multi-input multi-output system. In: Proceedings of the American Control Conference, pp. 1720–1724. AACC, Chicago (2000)

    Google Scholar 

  2. Bhandari, S., Colgren, R.: 6-dof dynamic model for a raptor 50 UAV helicopter including stabilizer bar dynamics. In: Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit. AIAA, Keystone (2006)

    Google Scholar 

  3. Cai, G., Cai, A.K., Chen, B.M., Lee, T.H.: Construction, modeling and control of a mini autonomous UAV helicopter. In: Proceedings of the IEEE International Conference on Automation and Logistics. IEEE, Qingdao (2008)

    Google Scholar 

  4. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-flying Machines. Springer Advances in Industrial Control (2005)

  5. Cerro, J.D., Valero, J., Vidal, J., Barrientos, A.: Modeling and identification of a small unmanned helicopter. In: Proceedings of IEEE Automation Congress, pp. 461–466. IEEE, Seville (2004)

    Google Scholar 

  6. Cunha, R., Silvestre, C.: Dynamic modeling and stability analysis of model-scale helicopters with Bell–Hiller stabilizing bar. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. AIAA, Austin (2003)

    Google Scholar 

  7. Ganguli, R.: Survey of recent developments in rotorcraft design optimization. J. Aircr. 441(3), 493–510 (2004)

    Article  MathSciNet  Google Scholar 

  8. Garratt, M., Ahmed, B., Pota, H.R.: Platform enhancements and system identification for control of an unmanned helicopter. In: Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. IEEE, Singapore (2008)

    Google Scholar 

  9. Gnemmi, P., Haertig, J.: Concept of a gun launched micro air vehicle. In: Proceedings of 26th AIAA Applied Aerodynamics Conference. AIAA, Honolulu (2008)

    Google Scholar 

  10. Gnemmi, P., Koehl, A., Martinez, B., Changey, S., Theodoulis, S.: Modeling and control of two GLMAV hover-flight concepts. European Micro Aerial Vehicle Conference and Flight Competition. French-German Reasearch Institute of Saint-Louis, Delft (2009)

  11. Hall, A.P.K., Wong, K.C., Auld, D.: Coaxial aero-mechanical analysis of MAV rotorcraft with rotor interaction for optimisation. In: Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA, Victoria (2008)

    Google Scholar 

  12. Jategaonkar, R.V.: Flight Vehicle System Identification: A Time Domain Methodology. AIAA Progress in Astronautics and Aeronautics (2006)

  13. Kirschstein, S., Alles, W.: Parameter identification with a controlled free flying model of a spaceplane. Aerosp. Sci. Technol. 9(4), 348–356 (2005)

    Article  Google Scholar 

  14. Klein, V., Morelli, E.A.: Aircraft System Identification Theory and Practice. AIAA Education Series (2006)

  15. Koehl, A., Rafaralahy, H., Martinez, B., Boutayeb, M.: Modeling and identification of a launched micro air vehicle: design and experimental results. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA/MST, Toronto (2010)

  16. Krashanitsa, R., Platanitis, G., Silin, B., Shkarayev, S.: Aerodynamics and controls design for autonomous micro air vehicles. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit. AIAA, Keystone (2006)

    Google Scholar 

  17. Leith, D.J.: Identification of the SA-330 Puma helicopter. IEE Proc. Control Theory Appl. 141(2), 130–136 (1994)

    Article  Google Scholar 

  18. Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Kluwer Academic Publishers (2003)

  19. Pflimlin, J.M.: Commande d’un Minidrone à Hélice Carénée: De la Stabilisation dans le Vent à la Navigation Autonome. Ph.D. thesis, Ecole Doctorale Systèmes, Laboratoire d’Analyse et d’Architecture des Systèmes, Toulouse (2006)

  20. Pines, D.J., Bohorquez, F.: Challenges facing future micro-air-vehicle development. J. Aircr. 43(2), 290–305 (2006)

    Article  Google Scholar 

  21. Ramasamy, M., Lee, T.E., Leishman, J.G.: Flowfield of a rotating-wing micro air vehicle. J. Aircr. 44(4), 1236–1244 (1994)

    Article  Google Scholar 

  22. Rebuffet, P.: Aérodynamique Expérimentale. Béranger-Dunod (1950)

  23. Smith, T.R., Shook, L., Uhelsky, F., McCoy, E., Krasinski, M., Limaye, S.: Ballute and parachute decelerators for FASM/QUICKLOOK UAV. In: Proceedings of Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA, Monterey (2003)

    Google Scholar 

  24. Taylor, D., Ol, M., Cord, T.: SkyTote advanced cargo delivery system. In: AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. AIAA, Dayton (2003)

    Google Scholar 

  25. Valvanis, K.P.: Advances in Unmanned Aerial Vehicles State of the Art and the Road to Autonomy. Springer (2007)

  26. Walchko, K.J., Nechyba, M.C., Schwartz, E., Arroyo, A.: Embedded Low Cost Inertial Navigation System. Florida Conference on Recent Advances in Robotics, University of Florida, Dania Beach (2003)

  27. Wang, H., Wang, D., Niu, X.: Modeling and hover control of a novel unmanned coaxial rotor/ducted-fan helicopter. In: Proceedings of the IEEE International Conference on Automation and Logistics. IEEE, Jinan (2007)

    Google Scholar 

  28. Wereley, N.M., Pines, D.J.: Feasibility Study of a Smart Submunition: Deployment From a Conventional Weapon. ARL-CR-0475, Army Research Laboratory, Aberdeen Proving Ground (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Koehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehl, A., Rafaralahy, H., Boutayeb, M. et al. Aerodynamic Modelling and Experimental Identification of a Coaxial-Rotor UAV. J Intell Robot Syst 68, 53–68 (2012). https://doi.org/10.1007/s10846-012-9665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9665-x

Keywords

Navigation